libstdc++
|
00001 // Multimap implementation -*- C++ -*- 00002 00003 // Copyright (C) 2001-2014 Free Software Foundation, Inc. 00004 // 00005 // This file is part of the GNU ISO C++ Library. This library is free 00006 // software; you can redistribute it and/or modify it under the 00007 // terms of the GNU General Public License as published by the 00008 // Free Software Foundation; either version 3, or (at your option) 00009 // any later version. 00010 00011 // This library is distributed in the hope that it will be useful, 00012 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00013 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00014 // GNU General Public License for more details. 00015 00016 // Under Section 7 of GPL version 3, you are granted additional 00017 // permissions described in the GCC Runtime Library Exception, version 00018 // 3.1, as published by the Free Software Foundation. 00019 00020 // You should have received a copy of the GNU General Public License and 00021 // a copy of the GCC Runtime Library Exception along with this program; 00022 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 00023 // <http://www.gnu.org/licenses/>. 00024 00025 /* 00026 * 00027 * Copyright (c) 1994 00028 * Hewlett-Packard Company 00029 * 00030 * Permission to use, copy, modify, distribute and sell this software 00031 * and its documentation for any purpose is hereby granted without fee, 00032 * provided that the above copyright notice appear in all copies and 00033 * that both that copyright notice and this permission notice appear 00034 * in supporting documentation. Hewlett-Packard Company makes no 00035 * representations about the suitability of this software for any 00036 * purpose. It is provided "as is" without express or implied warranty. 00037 * 00038 * 00039 * Copyright (c) 1996,1997 00040 * Silicon Graphics Computer Systems, Inc. 00041 * 00042 * Permission to use, copy, modify, distribute and sell this software 00043 * and its documentation for any purpose is hereby granted without fee, 00044 * provided that the above copyright notice appear in all copies and 00045 * that both that copyright notice and this permission notice appear 00046 * in supporting documentation. Silicon Graphics makes no 00047 * representations about the suitability of this software for any 00048 * purpose. It is provided "as is" without express or implied warranty. 00049 */ 00050 00051 /** @file bits/stl_multimap.h 00052 * This is an internal header file, included by other library headers. 00053 * Do not attempt to use it directly. @headername{map} 00054 */ 00055 00056 #ifndef _STL_MULTIMAP_H 00057 #define _STL_MULTIMAP_H 1 00058 00059 #include <bits/concept_check.h> 00060 #if __cplusplus >= 201103L 00061 #include <initializer_list> 00062 #endif 00063 00064 namespace std _GLIBCXX_VISIBILITY(default) 00065 { 00066 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER 00067 00068 /** 00069 * @brief A standard container made up of (key,value) pairs, which can be 00070 * retrieved based on a key, in logarithmic time. 00071 * 00072 * @ingroup associative_containers 00073 * 00074 * @tparam _Key Type of key objects. 00075 * @tparam _Tp Type of mapped objects. 00076 * @tparam _Compare Comparison function object type, defaults to less<_Key>. 00077 * @tparam _Alloc Allocator type, defaults to 00078 * allocator<pair<const _Key, _Tp>. 00079 * 00080 * Meets the requirements of a <a href="tables.html#65">container</a>, a 00081 * <a href="tables.html#66">reversible container</a>, and an 00082 * <a href="tables.html#69">associative container</a> (using equivalent 00083 * keys). For a @c multimap<Key,T> the key_type is Key, the mapped_type 00084 * is T, and the value_type is std::pair<const Key,T>. 00085 * 00086 * Multimaps support bidirectional iterators. 00087 * 00088 * The private tree data is declared exactly the same way for map and 00089 * multimap; the distinction is made entirely in how the tree functions are 00090 * called (*_unique versus *_equal, same as the standard). 00091 */ 00092 template <typename _Key, typename _Tp, 00093 typename _Compare = std::less<_Key>, 00094 typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > > 00095 class multimap 00096 { 00097 public: 00098 typedef _Key key_type; 00099 typedef _Tp mapped_type; 00100 typedef std::pair<const _Key, _Tp> value_type; 00101 typedef _Compare key_compare; 00102 typedef _Alloc allocator_type; 00103 00104 private: 00105 // concept requirements 00106 typedef typename _Alloc::value_type _Alloc_value_type; 00107 __glibcxx_class_requires(_Tp, _SGIAssignableConcept) 00108 __glibcxx_class_requires4(_Compare, bool, _Key, _Key, 00109 _BinaryFunctionConcept) 00110 __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept) 00111 00112 public: 00113 class value_compare 00114 : public std::binary_function<value_type, value_type, bool> 00115 { 00116 friend class multimap<_Key, _Tp, _Compare, _Alloc>; 00117 protected: 00118 _Compare comp; 00119 00120 value_compare(_Compare __c) 00121 : comp(__c) { } 00122 00123 public: 00124 bool operator()(const value_type& __x, const value_type& __y) const 00125 { return comp(__x.first, __y.first); } 00126 }; 00127 00128 private: 00129 /// This turns a red-black tree into a [multi]map. 00130 typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template 00131 rebind<value_type>::other _Pair_alloc_type; 00132 00133 typedef _Rb_tree<key_type, value_type, _Select1st<value_type>, 00134 key_compare, _Pair_alloc_type> _Rep_type; 00135 /// The actual tree structure. 00136 _Rep_type _M_t; 00137 00138 typedef __gnu_cxx::__alloc_traits<_Pair_alloc_type> _Alloc_traits; 00139 00140 public: 00141 // many of these are specified differently in ISO, but the following are 00142 // "functionally equivalent" 00143 typedef typename _Alloc_traits::pointer pointer; 00144 typedef typename _Alloc_traits::const_pointer const_pointer; 00145 typedef typename _Alloc_traits::reference reference; 00146 typedef typename _Alloc_traits::const_reference const_reference; 00147 typedef typename _Rep_type::iterator iterator; 00148 typedef typename _Rep_type::const_iterator const_iterator; 00149 typedef typename _Rep_type::size_type size_type; 00150 typedef typename _Rep_type::difference_type difference_type; 00151 typedef typename _Rep_type::reverse_iterator reverse_iterator; 00152 typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator; 00153 00154 // [23.3.2] construct/copy/destroy 00155 // (get_allocator() is also listed in this section) 00156 00157 /** 00158 * @brief Default constructor creates no elements. 00159 */ 00160 multimap() 00161 : _M_t() { } 00162 00163 /** 00164 * @brief Creates a %multimap with no elements. 00165 * @param __comp A comparison object. 00166 * @param __a An allocator object. 00167 */ 00168 explicit 00169 multimap(const _Compare& __comp, 00170 const allocator_type& __a = allocator_type()) 00171 : _M_t(__comp, _Pair_alloc_type(__a)) { } 00172 00173 /** 00174 * @brief %Multimap copy constructor. 00175 * @param __x A %multimap of identical element and allocator types. 00176 * 00177 * The newly-created %multimap uses a copy of the allocation object 00178 * used by @a __x. 00179 */ 00180 multimap(const multimap& __x) 00181 : _M_t(__x._M_t) { } 00182 00183 #if __cplusplus >= 201103L 00184 /** 00185 * @brief %Multimap move constructor. 00186 * @param __x A %multimap of identical element and allocator types. 00187 * 00188 * The newly-created %multimap contains the exact contents of @a __x. 00189 * The contents of @a __x are a valid, but unspecified %multimap. 00190 */ 00191 multimap(multimap&& __x) 00192 noexcept(is_nothrow_copy_constructible<_Compare>::value) 00193 : _M_t(std::move(__x._M_t)) { } 00194 00195 /** 00196 * @brief Builds a %multimap from an initializer_list. 00197 * @param __l An initializer_list. 00198 * @param __comp A comparison functor. 00199 * @param __a An allocator object. 00200 * 00201 * Create a %multimap consisting of copies of the elements from 00202 * the initializer_list. This is linear in N if the list is already 00203 * sorted, and NlogN otherwise (where N is @a __l.size()). 00204 */ 00205 multimap(initializer_list<value_type> __l, 00206 const _Compare& __comp = _Compare(), 00207 const allocator_type& __a = allocator_type()) 00208 : _M_t(__comp, _Pair_alloc_type(__a)) 00209 { _M_t._M_insert_equal(__l.begin(), __l.end()); } 00210 00211 /// Allocator-extended default constructor. 00212 explicit 00213 multimap(const allocator_type& __a) 00214 : _M_t(_Compare(), _Pair_alloc_type(__a)) { } 00215 00216 /// Allocator-extended copy constructor. 00217 multimap(const multimap& __m, const allocator_type& __a) 00218 : _M_t(__m._M_t, _Pair_alloc_type(__a)) { } 00219 00220 /// Allocator-extended move constructor. 00221 multimap(multimap&& __m, const allocator_type& __a) 00222 noexcept(is_nothrow_copy_constructible<_Compare>::value 00223 && _Alloc_traits::_S_always_equal()) 00224 : _M_t(std::move(__m._M_t), _Pair_alloc_type(__a)) { } 00225 00226 /// Allocator-extended initialier-list constructor. 00227 multimap(initializer_list<value_type> __l, const allocator_type& __a) 00228 : _M_t(_Compare(), _Pair_alloc_type(__a)) 00229 { _M_t._M_insert_equal(__l.begin(), __l.end()); } 00230 00231 /// Allocator-extended range constructor. 00232 template<typename _InputIterator> 00233 multimap(_InputIterator __first, _InputIterator __last, 00234 const allocator_type& __a) 00235 : _M_t(_Compare(), _Pair_alloc_type(__a)) 00236 { _M_t._M_insert_equal(__first, __last); } 00237 #endif 00238 00239 /** 00240 * @brief Builds a %multimap from a range. 00241 * @param __first An input iterator. 00242 * @param __last An input iterator. 00243 * 00244 * Create a %multimap consisting of copies of the elements from 00245 * [__first,__last). This is linear in N if the range is already sorted, 00246 * and NlogN otherwise (where N is distance(__first,__last)). 00247 */ 00248 template<typename _InputIterator> 00249 multimap(_InputIterator __first, _InputIterator __last) 00250 : _M_t() 00251 { _M_t._M_insert_equal(__first, __last); } 00252 00253 /** 00254 * @brief Builds a %multimap from a range. 00255 * @param __first An input iterator. 00256 * @param __last An input iterator. 00257 * @param __comp A comparison functor. 00258 * @param __a An allocator object. 00259 * 00260 * Create a %multimap consisting of copies of the elements from 00261 * [__first,__last). This is linear in N if the range is already sorted, 00262 * and NlogN otherwise (where N is distance(__first,__last)). 00263 */ 00264 template<typename _InputIterator> 00265 multimap(_InputIterator __first, _InputIterator __last, 00266 const _Compare& __comp, 00267 const allocator_type& __a = allocator_type()) 00268 : _M_t(__comp, _Pair_alloc_type(__a)) 00269 { _M_t._M_insert_equal(__first, __last); } 00270 00271 // FIXME There is no dtor declared, but we should have something generated 00272 // by Doxygen. I don't know what tags to add to this paragraph to make 00273 // that happen: 00274 /** 00275 * The dtor only erases the elements, and note that if the elements 00276 * themselves are pointers, the pointed-to memory is not touched in any 00277 * way. Managing the pointer is the user's responsibility. 00278 */ 00279 00280 /** 00281 * @brief %Multimap assignment operator. 00282 * @param __x A %multimap of identical element and allocator types. 00283 * 00284 * All the elements of @a __x are copied, but unlike the copy 00285 * constructor, the allocator object is not copied. 00286 */ 00287 multimap& 00288 operator=(const multimap& __x) 00289 { 00290 _M_t = __x._M_t; 00291 return *this; 00292 } 00293 00294 #if __cplusplus >= 201103L 00295 /** 00296 * @brief %Multimap move assignment operator. 00297 * @param __x A %multimap of identical element and allocator types. 00298 * 00299 * The contents of @a __x are moved into this multimap (without copying 00300 * if the allocators compare equal or get moved on assignment). 00301 * Afterwards @a __x is in a valid, but unspecified state. 00302 */ 00303 multimap& 00304 operator=(multimap&& __x) noexcept(_Alloc_traits::_S_nothrow_move()) 00305 { 00306 if (!_M_t._M_move_assign(__x._M_t)) 00307 { 00308 // The rvalue's allocator cannot be moved and is not equal, 00309 // so we need to individually move each element. 00310 clear(); 00311 insert(std::__make_move_if_noexcept_iterator(__x.begin()), 00312 std::__make_move_if_noexcept_iterator(__x.end())); 00313 __x.clear(); 00314 } 00315 return *this; 00316 } 00317 00318 /** 00319 * @brief %Multimap list assignment operator. 00320 * @param __l An initializer_list. 00321 * 00322 * This function fills a %multimap with copies of the elements 00323 * in the initializer list @a __l. 00324 * 00325 * Note that the assignment completely changes the %multimap and 00326 * that the resulting %multimap's size is the same as the number 00327 * of elements assigned. Old data may be lost. 00328 */ 00329 multimap& 00330 operator=(initializer_list<value_type> __l) 00331 { 00332 this->clear(); 00333 this->insert(__l.begin(), __l.end()); 00334 return *this; 00335 } 00336 #endif 00337 00338 /// Get a copy of the memory allocation object. 00339 allocator_type 00340 get_allocator() const _GLIBCXX_NOEXCEPT 00341 { return allocator_type(_M_t.get_allocator()); } 00342 00343 // iterators 00344 /** 00345 * Returns a read/write iterator that points to the first pair in the 00346 * %multimap. Iteration is done in ascending order according to the 00347 * keys. 00348 */ 00349 iterator 00350 begin() _GLIBCXX_NOEXCEPT 00351 { return _M_t.begin(); } 00352 00353 /** 00354 * Returns a read-only (constant) iterator that points to the first pair 00355 * in the %multimap. Iteration is done in ascending order according to 00356 * the keys. 00357 */ 00358 const_iterator 00359 begin() const _GLIBCXX_NOEXCEPT 00360 { return _M_t.begin(); } 00361 00362 /** 00363 * Returns a read/write iterator that points one past the last pair in 00364 * the %multimap. Iteration is done in ascending order according to the 00365 * keys. 00366 */ 00367 iterator 00368 end() _GLIBCXX_NOEXCEPT 00369 { return _M_t.end(); } 00370 00371 /** 00372 * Returns a read-only (constant) iterator that points one past the last 00373 * pair in the %multimap. Iteration is done in ascending order according 00374 * to the keys. 00375 */ 00376 const_iterator 00377 end() const _GLIBCXX_NOEXCEPT 00378 { return _M_t.end(); } 00379 00380 /** 00381 * Returns a read/write reverse iterator that points to the last pair in 00382 * the %multimap. Iteration is done in descending order according to the 00383 * keys. 00384 */ 00385 reverse_iterator 00386 rbegin() _GLIBCXX_NOEXCEPT 00387 { return _M_t.rbegin(); } 00388 00389 /** 00390 * Returns a read-only (constant) reverse iterator that points to the 00391 * last pair in the %multimap. Iteration is done in descending order 00392 * according to the keys. 00393 */ 00394 const_reverse_iterator 00395 rbegin() const _GLIBCXX_NOEXCEPT 00396 { return _M_t.rbegin(); } 00397 00398 /** 00399 * Returns a read/write reverse iterator that points to one before the 00400 * first pair in the %multimap. Iteration is done in descending order 00401 * according to the keys. 00402 */ 00403 reverse_iterator 00404 rend() _GLIBCXX_NOEXCEPT 00405 { return _M_t.rend(); } 00406 00407 /** 00408 * Returns a read-only (constant) reverse iterator that points to one 00409 * before the first pair in the %multimap. Iteration is done in 00410 * descending order according to the keys. 00411 */ 00412 const_reverse_iterator 00413 rend() const _GLIBCXX_NOEXCEPT 00414 { return _M_t.rend(); } 00415 00416 #if __cplusplus >= 201103L 00417 /** 00418 * Returns a read-only (constant) iterator that points to the first pair 00419 * in the %multimap. Iteration is done in ascending order according to 00420 * the keys. 00421 */ 00422 const_iterator 00423 cbegin() const noexcept 00424 { return _M_t.begin(); } 00425 00426 /** 00427 * Returns a read-only (constant) iterator that points one past the last 00428 * pair in the %multimap. Iteration is done in ascending order according 00429 * to the keys. 00430 */ 00431 const_iterator 00432 cend() const noexcept 00433 { return _M_t.end(); } 00434 00435 /** 00436 * Returns a read-only (constant) reverse iterator that points to the 00437 * last pair in the %multimap. Iteration is done in descending order 00438 * according to the keys. 00439 */ 00440 const_reverse_iterator 00441 crbegin() const noexcept 00442 { return _M_t.rbegin(); } 00443 00444 /** 00445 * Returns a read-only (constant) reverse iterator that points to one 00446 * before the first pair in the %multimap. Iteration is done in 00447 * descending order according to the keys. 00448 */ 00449 const_reverse_iterator 00450 crend() const noexcept 00451 { return _M_t.rend(); } 00452 #endif 00453 00454 // capacity 00455 /** Returns true if the %multimap is empty. */ 00456 bool 00457 empty() const _GLIBCXX_NOEXCEPT 00458 { return _M_t.empty(); } 00459 00460 /** Returns the size of the %multimap. */ 00461 size_type 00462 size() const _GLIBCXX_NOEXCEPT 00463 { return _M_t.size(); } 00464 00465 /** Returns the maximum size of the %multimap. */ 00466 size_type 00467 max_size() const _GLIBCXX_NOEXCEPT 00468 { return _M_t.max_size(); } 00469 00470 // modifiers 00471 #if __cplusplus >= 201103L 00472 /** 00473 * @brief Build and insert a std::pair into the %multimap. 00474 * 00475 * @param __args Arguments used to generate a new pair instance (see 00476 * std::piecewise_contruct for passing arguments to each 00477 * part of the pair constructor). 00478 * 00479 * @return An iterator that points to the inserted (key,value) pair. 00480 * 00481 * This function builds and inserts a (key, value) %pair into the 00482 * %multimap. 00483 * Contrary to a std::map the %multimap does not rely on unique keys and 00484 * thus multiple pairs with the same key can be inserted. 00485 * 00486 * Insertion requires logarithmic time. 00487 */ 00488 template<typename... _Args> 00489 iterator 00490 emplace(_Args&&... __args) 00491 { return _M_t._M_emplace_equal(std::forward<_Args>(__args)...); } 00492 00493 /** 00494 * @brief Builds and inserts a std::pair into the %multimap. 00495 * 00496 * @param __pos An iterator that serves as a hint as to where the pair 00497 * should be inserted. 00498 * @param __args Arguments used to generate a new pair instance (see 00499 * std::piecewise_contruct for passing arguments to each 00500 * part of the pair constructor). 00501 * @return An iterator that points to the inserted (key,value) pair. 00502 * 00503 * This function inserts a (key, value) pair into the %multimap. 00504 * Contrary to a std::map the %multimap does not rely on unique keys and 00505 * thus multiple pairs with the same key can be inserted. 00506 * Note that the first parameter is only a hint and can potentially 00507 * improve the performance of the insertion process. A bad hint would 00508 * cause no gains in efficiency. 00509 * 00510 * For more on @a hinting, see: 00511 * http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt07ch17.html 00512 * 00513 * Insertion requires logarithmic time (if the hint is not taken). 00514 */ 00515 template<typename... _Args> 00516 iterator 00517 emplace_hint(const_iterator __pos, _Args&&... __args) 00518 { 00519 return _M_t._M_emplace_hint_equal(__pos, 00520 std::forward<_Args>(__args)...); 00521 } 00522 #endif 00523 00524 /** 00525 * @brief Inserts a std::pair into the %multimap. 00526 * @param __x Pair to be inserted (see std::make_pair for easy creation 00527 * of pairs). 00528 * @return An iterator that points to the inserted (key,value) pair. 00529 * 00530 * This function inserts a (key, value) pair into the %multimap. 00531 * Contrary to a std::map the %multimap does not rely on unique keys and 00532 * thus multiple pairs with the same key can be inserted. 00533 * 00534 * Insertion requires logarithmic time. 00535 */ 00536 iterator 00537 insert(const value_type& __x) 00538 { return _M_t._M_insert_equal(__x); } 00539 00540 #if __cplusplus >= 201103L 00541 template<typename _Pair, typename = typename 00542 std::enable_if<std::is_constructible<value_type, 00543 _Pair&&>::value>::type> 00544 iterator 00545 insert(_Pair&& __x) 00546 { return _M_t._M_insert_equal(std::forward<_Pair>(__x)); } 00547 #endif 00548 00549 /** 00550 * @brief Inserts a std::pair into the %multimap. 00551 * @param __position An iterator that serves as a hint as to where the 00552 * pair should be inserted. 00553 * @param __x Pair to be inserted (see std::make_pair for easy creation 00554 * of pairs). 00555 * @return An iterator that points to the inserted (key,value) pair. 00556 * 00557 * This function inserts a (key, value) pair into the %multimap. 00558 * Contrary to a std::map the %multimap does not rely on unique keys and 00559 * thus multiple pairs with the same key can be inserted. 00560 * Note that the first parameter is only a hint and can potentially 00561 * improve the performance of the insertion process. A bad hint would 00562 * cause no gains in efficiency. 00563 * 00564 * For more on @a hinting, see: 00565 * http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt07ch17.html 00566 * 00567 * Insertion requires logarithmic time (if the hint is not taken). 00568 */ 00569 iterator 00570 #if __cplusplus >= 201103L 00571 insert(const_iterator __position, const value_type& __x) 00572 #else 00573 insert(iterator __position, const value_type& __x) 00574 #endif 00575 { return _M_t._M_insert_equal_(__position, __x); } 00576 00577 #if __cplusplus >= 201103L 00578 template<typename _Pair, typename = typename 00579 std::enable_if<std::is_constructible<value_type, 00580 _Pair&&>::value>::type> 00581 iterator 00582 insert(const_iterator __position, _Pair&& __x) 00583 { return _M_t._M_insert_equal_(__position, 00584 std::forward<_Pair>(__x)); } 00585 #endif 00586 00587 /** 00588 * @brief A template function that attempts to insert a range 00589 * of elements. 00590 * @param __first Iterator pointing to the start of the range to be 00591 * inserted. 00592 * @param __last Iterator pointing to the end of the range. 00593 * 00594 * Complexity similar to that of the range constructor. 00595 */ 00596 template<typename _InputIterator> 00597 void 00598 insert(_InputIterator __first, _InputIterator __last) 00599 { _M_t._M_insert_equal(__first, __last); } 00600 00601 #if __cplusplus >= 201103L 00602 /** 00603 * @brief Attempts to insert a list of std::pairs into the %multimap. 00604 * @param __l A std::initializer_list<value_type> of pairs to be 00605 * inserted. 00606 * 00607 * Complexity similar to that of the range constructor. 00608 */ 00609 void 00610 insert(initializer_list<value_type> __l) 00611 { this->insert(__l.begin(), __l.end()); } 00612 #endif 00613 00614 #if __cplusplus >= 201103L 00615 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00616 // DR 130. Associative erase should return an iterator. 00617 /** 00618 * @brief Erases an element from a %multimap. 00619 * @param __position An iterator pointing to the element to be erased. 00620 * @return An iterator pointing to the element immediately following 00621 * @a position prior to the element being erased. If no such 00622 * element exists, end() is returned. 00623 * 00624 * This function erases an element, pointed to by the given iterator, 00625 * from a %multimap. Note that this function only erases the element, 00626 * and that if the element is itself a pointer, the pointed-to memory is 00627 * not touched in any way. Managing the pointer is the user's 00628 * responsibility. 00629 */ 00630 iterator 00631 erase(const_iterator __position) 00632 { return _M_t.erase(__position); } 00633 00634 // LWG 2059. 00635 _GLIBCXX_ABI_TAG_CXX11 00636 iterator 00637 erase(iterator __position) 00638 { return _M_t.erase(__position); } 00639 #else 00640 /** 00641 * @brief Erases an element from a %multimap. 00642 * @param __position An iterator pointing to the element to be erased. 00643 * 00644 * This function erases an element, pointed to by the given iterator, 00645 * from a %multimap. Note that this function only erases the element, 00646 * and that if the element is itself a pointer, the pointed-to memory is 00647 * not touched in any way. Managing the pointer is the user's 00648 * responsibility. 00649 */ 00650 void 00651 erase(iterator __position) 00652 { _M_t.erase(__position); } 00653 #endif 00654 00655 /** 00656 * @brief Erases elements according to the provided key. 00657 * @param __x Key of element to be erased. 00658 * @return The number of elements erased. 00659 * 00660 * This function erases all elements located by the given key from a 00661 * %multimap. 00662 * Note that this function only erases the element, and that if 00663 * the element is itself a pointer, the pointed-to memory is not touched 00664 * in any way. Managing the pointer is the user's responsibility. 00665 */ 00666 size_type 00667 erase(const key_type& __x) 00668 { return _M_t.erase(__x); } 00669 00670 #if __cplusplus >= 201103L 00671 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00672 // DR 130. Associative erase should return an iterator. 00673 /** 00674 * @brief Erases a [first,last) range of elements from a %multimap. 00675 * @param __first Iterator pointing to the start of the range to be 00676 * erased. 00677 * @param __last Iterator pointing to the end of the range to be 00678 * erased . 00679 * @return The iterator @a __last. 00680 * 00681 * This function erases a sequence of elements from a %multimap. 00682 * Note that this function only erases the elements, and that if 00683 * the elements themselves are pointers, the pointed-to memory is not 00684 * touched in any way. Managing the pointer is the user's 00685 * responsibility. 00686 */ 00687 iterator 00688 erase(const_iterator __first, const_iterator __last) 00689 { return _M_t.erase(__first, __last); } 00690 #else 00691 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00692 // DR 130. Associative erase should return an iterator. 00693 /** 00694 * @brief Erases a [first,last) range of elements from a %multimap. 00695 * @param __first Iterator pointing to the start of the range to be 00696 * erased. 00697 * @param __last Iterator pointing to the end of the range to 00698 * be erased. 00699 * 00700 * This function erases a sequence of elements from a %multimap. 00701 * Note that this function only erases the elements, and that if 00702 * the elements themselves are pointers, the pointed-to memory is not 00703 * touched in any way. Managing the pointer is the user's 00704 * responsibility. 00705 */ 00706 void 00707 erase(iterator __first, iterator __last) 00708 { _M_t.erase(__first, __last); } 00709 #endif 00710 00711 /** 00712 * @brief Swaps data with another %multimap. 00713 * @param __x A %multimap of the same element and allocator types. 00714 * 00715 * This exchanges the elements between two multimaps in constant time. 00716 * (It is only swapping a pointer, an integer, and an instance of 00717 * the @c Compare type (which itself is often stateless and empty), so it 00718 * should be quite fast.) 00719 * Note that the global std::swap() function is specialized such that 00720 * std::swap(m1,m2) will feed to this function. 00721 */ 00722 void 00723 swap(multimap& __x) 00724 #if __cplusplus >= 201103L 00725 noexcept(_Alloc_traits::_S_nothrow_swap()) 00726 #endif 00727 { _M_t.swap(__x._M_t); } 00728 00729 /** 00730 * Erases all elements in a %multimap. Note that this function only 00731 * erases the elements, and that if the elements themselves are pointers, 00732 * the pointed-to memory is not touched in any way. Managing the pointer 00733 * is the user's responsibility. 00734 */ 00735 void 00736 clear() _GLIBCXX_NOEXCEPT 00737 { _M_t.clear(); } 00738 00739 // observers 00740 /** 00741 * Returns the key comparison object out of which the %multimap 00742 * was constructed. 00743 */ 00744 key_compare 00745 key_comp() const 00746 { return _M_t.key_comp(); } 00747 00748 /** 00749 * Returns a value comparison object, built from the key comparison 00750 * object out of which the %multimap was constructed. 00751 */ 00752 value_compare 00753 value_comp() const 00754 { return value_compare(_M_t.key_comp()); } 00755 00756 // multimap operations 00757 /** 00758 * @brief Tries to locate an element in a %multimap. 00759 * @param __x Key of (key, value) pair to be located. 00760 * @return Iterator pointing to sought-after element, 00761 * or end() if not found. 00762 * 00763 * This function takes a key and tries to locate the element with which 00764 * the key matches. If successful the function returns an iterator 00765 * pointing to the sought after %pair. If unsuccessful it returns the 00766 * past-the-end ( @c end() ) iterator. 00767 */ 00768 iterator 00769 find(const key_type& __x) 00770 { return _M_t.find(__x); } 00771 00772 /** 00773 * @brief Tries to locate an element in a %multimap. 00774 * @param __x Key of (key, value) pair to be located. 00775 * @return Read-only (constant) iterator pointing to sought-after 00776 * element, or end() if not found. 00777 * 00778 * This function takes a key and tries to locate the element with which 00779 * the key matches. If successful the function returns a constant 00780 * iterator pointing to the sought after %pair. If unsuccessful it 00781 * returns the past-the-end ( @c end() ) iterator. 00782 */ 00783 const_iterator 00784 find(const key_type& __x) const 00785 { return _M_t.find(__x); } 00786 00787 /** 00788 * @brief Finds the number of elements with given key. 00789 * @param __x Key of (key, value) pairs to be located. 00790 * @return Number of elements with specified key. 00791 */ 00792 size_type 00793 count(const key_type& __x) const 00794 { return _M_t.count(__x); } 00795 00796 /** 00797 * @brief Finds the beginning of a subsequence matching given key. 00798 * @param __x Key of (key, value) pair to be located. 00799 * @return Iterator pointing to first element equal to or greater 00800 * than key, or end(). 00801 * 00802 * This function returns the first element of a subsequence of elements 00803 * that matches the given key. If unsuccessful it returns an iterator 00804 * pointing to the first element that has a greater value than given key 00805 * or end() if no such element exists. 00806 */ 00807 iterator 00808 lower_bound(const key_type& __x) 00809 { return _M_t.lower_bound(__x); } 00810 00811 /** 00812 * @brief Finds the beginning of a subsequence matching given key. 00813 * @param __x Key of (key, value) pair to be located. 00814 * @return Read-only (constant) iterator pointing to first element 00815 * equal to or greater than key, or end(). 00816 * 00817 * This function returns the first element of a subsequence of 00818 * elements that matches the given key. If unsuccessful the 00819 * iterator will point to the next greatest element or, if no 00820 * such greater element exists, to end(). 00821 */ 00822 const_iterator 00823 lower_bound(const key_type& __x) const 00824 { return _M_t.lower_bound(__x); } 00825 00826 /** 00827 * @brief Finds the end of a subsequence matching given key. 00828 * @param __x Key of (key, value) pair to be located. 00829 * @return Iterator pointing to the first element 00830 * greater than key, or end(). 00831 */ 00832 iterator 00833 upper_bound(const key_type& __x) 00834 { return _M_t.upper_bound(__x); } 00835 00836 /** 00837 * @brief Finds the end of a subsequence matching given key. 00838 * @param __x Key of (key, value) pair to be located. 00839 * @return Read-only (constant) iterator pointing to first iterator 00840 * greater than key, or end(). 00841 */ 00842 const_iterator 00843 upper_bound(const key_type& __x) const 00844 { return _M_t.upper_bound(__x); } 00845 00846 /** 00847 * @brief Finds a subsequence matching given key. 00848 * @param __x Key of (key, value) pairs to be located. 00849 * @return Pair of iterators that possibly points to the subsequence 00850 * matching given key. 00851 * 00852 * This function is equivalent to 00853 * @code 00854 * std::make_pair(c.lower_bound(val), 00855 * c.upper_bound(val)) 00856 * @endcode 00857 * (but is faster than making the calls separately). 00858 */ 00859 std::pair<iterator, iterator> 00860 equal_range(const key_type& __x) 00861 { return _M_t.equal_range(__x); } 00862 00863 /** 00864 * @brief Finds a subsequence matching given key. 00865 * @param __x Key of (key, value) pairs to be located. 00866 * @return Pair of read-only (constant) iterators that possibly points 00867 * to the subsequence matching given key. 00868 * 00869 * This function is equivalent to 00870 * @code 00871 * std::make_pair(c.lower_bound(val), 00872 * c.upper_bound(val)) 00873 * @endcode 00874 * (but is faster than making the calls separately). 00875 */ 00876 std::pair<const_iterator, const_iterator> 00877 equal_range(const key_type& __x) const 00878 { return _M_t.equal_range(__x); } 00879 00880 template<typename _K1, typename _T1, typename _C1, typename _A1> 00881 friend bool 00882 operator==(const multimap<_K1, _T1, _C1, _A1>&, 00883 const multimap<_K1, _T1, _C1, _A1>&); 00884 00885 template<typename _K1, typename _T1, typename _C1, typename _A1> 00886 friend bool 00887 operator<(const multimap<_K1, _T1, _C1, _A1>&, 00888 const multimap<_K1, _T1, _C1, _A1>&); 00889 }; 00890 00891 /** 00892 * @brief Multimap equality comparison. 00893 * @param __x A %multimap. 00894 * @param __y A %multimap of the same type as @a __x. 00895 * @return True iff the size and elements of the maps are equal. 00896 * 00897 * This is an equivalence relation. It is linear in the size of the 00898 * multimaps. Multimaps are considered equivalent if their sizes are equal, 00899 * and if corresponding elements compare equal. 00900 */ 00901 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00902 inline bool 00903 operator==(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00904 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 00905 { return __x._M_t == __y._M_t; } 00906 00907 /** 00908 * @brief Multimap ordering relation. 00909 * @param __x A %multimap. 00910 * @param __y A %multimap of the same type as @a __x. 00911 * @return True iff @a x is lexicographically less than @a y. 00912 * 00913 * This is a total ordering relation. It is linear in the size of the 00914 * multimaps. The elements must be comparable with @c <. 00915 * 00916 * See std::lexicographical_compare() for how the determination is made. 00917 */ 00918 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00919 inline bool 00920 operator<(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00921 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 00922 { return __x._M_t < __y._M_t; } 00923 00924 /// Based on operator== 00925 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00926 inline bool 00927 operator!=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00928 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 00929 { return !(__x == __y); } 00930 00931 /// Based on operator< 00932 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00933 inline bool 00934 operator>(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00935 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 00936 { return __y < __x; } 00937 00938 /// Based on operator< 00939 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00940 inline bool 00941 operator<=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00942 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 00943 { return !(__y < __x); } 00944 00945 /// Based on operator< 00946 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00947 inline bool 00948 operator>=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00949 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 00950 { return !(__x < __y); } 00951 00952 /// See std::multimap::swap(). 00953 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00954 inline void 00955 swap(multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00956 multimap<_Key, _Tp, _Compare, _Alloc>& __y) 00957 { __x.swap(__y); } 00958 00959 _GLIBCXX_END_NAMESPACE_CONTAINER 00960 } // namespace std 00961 00962 #endif /* _STL_MULTIMAP_H */