libstdc++
|
00001 // Map implementation -*- C++ -*- 00002 00003 // Copyright (C) 2001-2014 Free Software Foundation, Inc. 00004 // 00005 // This file is part of the GNU ISO C++ Library. This library is free 00006 // software; you can redistribute it and/or modify it under the 00007 // terms of the GNU General Public License as published by the 00008 // Free Software Foundation; either version 3, or (at your option) 00009 // any later version. 00010 00011 // This library is distributed in the hope that it will be useful, 00012 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00013 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00014 // GNU General Public License for more details. 00015 00016 // Under Section 7 of GPL version 3, you are granted additional 00017 // permissions described in the GCC Runtime Library Exception, version 00018 // 3.1, as published by the Free Software Foundation. 00019 00020 // You should have received a copy of the GNU General Public License and 00021 // a copy of the GCC Runtime Library Exception along with this program; 00022 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 00023 // <http://www.gnu.org/licenses/>. 00024 00025 /* 00026 * 00027 * Copyright (c) 1994 00028 * Hewlett-Packard Company 00029 * 00030 * Permission to use, copy, modify, distribute and sell this software 00031 * and its documentation for any purpose is hereby granted without fee, 00032 * provided that the above copyright notice appear in all copies and 00033 * that both that copyright notice and this permission notice appear 00034 * in supporting documentation. Hewlett-Packard Company makes no 00035 * representations about the suitability of this software for any 00036 * purpose. It is provided "as is" without express or implied warranty. 00037 * 00038 * 00039 * Copyright (c) 1996,1997 00040 * Silicon Graphics Computer Systems, Inc. 00041 * 00042 * Permission to use, copy, modify, distribute and sell this software 00043 * and its documentation for any purpose is hereby granted without fee, 00044 * provided that the above copyright notice appear in all copies and 00045 * that both that copyright notice and this permission notice appear 00046 * in supporting documentation. Silicon Graphics makes no 00047 * representations about the suitability of this software for any 00048 * purpose. It is provided "as is" without express or implied warranty. 00049 */ 00050 00051 /** @file bits/stl_map.h 00052 * This is an internal header file, included by other library headers. 00053 * Do not attempt to use it directly. @headername{map} 00054 */ 00055 00056 #ifndef _STL_MAP_H 00057 #define _STL_MAP_H 1 00058 00059 #include <bits/functexcept.h> 00060 #include <bits/concept_check.h> 00061 #if __cplusplus >= 201103L 00062 #include <initializer_list> 00063 #include <tuple> 00064 #endif 00065 00066 namespace std _GLIBCXX_VISIBILITY(default) 00067 { 00068 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER 00069 00070 /** 00071 * @brief A standard container made up of (key,value) pairs, which can be 00072 * retrieved based on a key, in logarithmic time. 00073 * 00074 * @ingroup associative_containers 00075 * 00076 * @tparam _Key Type of key objects. 00077 * @tparam _Tp Type of mapped objects. 00078 * @tparam _Compare Comparison function object type, defaults to less<_Key>. 00079 * @tparam _Alloc Allocator type, defaults to 00080 * allocator<pair<const _Key, _Tp>. 00081 * 00082 * Meets the requirements of a <a href="tables.html#65">container</a>, a 00083 * <a href="tables.html#66">reversible container</a>, and an 00084 * <a href="tables.html#69">associative container</a> (using unique keys). 00085 * For a @c map<Key,T> the key_type is Key, the mapped_type is T, and the 00086 * value_type is std::pair<const Key,T>. 00087 * 00088 * Maps support bidirectional iterators. 00089 * 00090 * The private tree data is declared exactly the same way for map and 00091 * multimap; the distinction is made entirely in how the tree functions are 00092 * called (*_unique versus *_equal, same as the standard). 00093 */ 00094 template <typename _Key, typename _Tp, typename _Compare = std::less<_Key>, 00095 typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > > 00096 class map 00097 { 00098 public: 00099 typedef _Key key_type; 00100 typedef _Tp mapped_type; 00101 typedef std::pair<const _Key, _Tp> value_type; 00102 typedef _Compare key_compare; 00103 typedef _Alloc allocator_type; 00104 00105 private: 00106 // concept requirements 00107 typedef typename _Alloc::value_type _Alloc_value_type; 00108 __glibcxx_class_requires(_Tp, _SGIAssignableConcept) 00109 __glibcxx_class_requires4(_Compare, bool, _Key, _Key, 00110 _BinaryFunctionConcept) 00111 __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept) 00112 00113 public: 00114 class value_compare 00115 : public std::binary_function<value_type, value_type, bool> 00116 { 00117 friend class map<_Key, _Tp, _Compare, _Alloc>; 00118 protected: 00119 _Compare comp; 00120 00121 value_compare(_Compare __c) 00122 : comp(__c) { } 00123 00124 public: 00125 bool operator()(const value_type& __x, const value_type& __y) const 00126 { return comp(__x.first, __y.first); } 00127 }; 00128 00129 private: 00130 /// This turns a red-black tree into a [multi]map. 00131 typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template 00132 rebind<value_type>::other _Pair_alloc_type; 00133 00134 typedef _Rb_tree<key_type, value_type, _Select1st<value_type>, 00135 key_compare, _Pair_alloc_type> _Rep_type; 00136 00137 /// The actual tree structure. 00138 _Rep_type _M_t; 00139 00140 typedef __gnu_cxx::__alloc_traits<_Pair_alloc_type> _Alloc_traits; 00141 00142 public: 00143 // many of these are specified differently in ISO, but the following are 00144 // "functionally equivalent" 00145 typedef typename _Alloc_traits::pointer pointer; 00146 typedef typename _Alloc_traits::const_pointer const_pointer; 00147 typedef typename _Alloc_traits::reference reference; 00148 typedef typename _Alloc_traits::const_reference const_reference; 00149 typedef typename _Rep_type::iterator iterator; 00150 typedef typename _Rep_type::const_iterator const_iterator; 00151 typedef typename _Rep_type::size_type size_type; 00152 typedef typename _Rep_type::difference_type difference_type; 00153 typedef typename _Rep_type::reverse_iterator reverse_iterator; 00154 typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator; 00155 00156 // [23.3.1.1] construct/copy/destroy 00157 // (get_allocator() is also listed in this section) 00158 00159 /** 00160 * @brief Default constructor creates no elements. 00161 */ 00162 map() 00163 : _M_t() { } 00164 00165 /** 00166 * @brief Creates a %map with no elements. 00167 * @param __comp A comparison object. 00168 * @param __a An allocator object. 00169 */ 00170 explicit 00171 map(const _Compare& __comp, 00172 const allocator_type& __a = allocator_type()) 00173 : _M_t(__comp, _Pair_alloc_type(__a)) { } 00174 00175 /** 00176 * @brief %Map copy constructor. 00177 * @param __x A %map of identical element and allocator types. 00178 * 00179 * The newly-created %map uses a copy of the allocation object 00180 * used by @a __x. 00181 */ 00182 map(const map& __x) 00183 : _M_t(__x._M_t) { } 00184 00185 #if __cplusplus >= 201103L 00186 /** 00187 * @brief %Map move constructor. 00188 * @param __x A %map of identical element and allocator types. 00189 * 00190 * The newly-created %map contains the exact contents of @a __x. 00191 * The contents of @a __x are a valid, but unspecified %map. 00192 */ 00193 map(map&& __x) 00194 noexcept(is_nothrow_copy_constructible<_Compare>::value) 00195 : _M_t(std::move(__x._M_t)) { } 00196 00197 /** 00198 * @brief Builds a %map from an initializer_list. 00199 * @param __l An initializer_list. 00200 * @param __comp A comparison object. 00201 * @param __a An allocator object. 00202 * 00203 * Create a %map consisting of copies of the elements in the 00204 * initializer_list @a __l. 00205 * This is linear in N if the range is already sorted, and NlogN 00206 * otherwise (where N is @a __l.size()). 00207 */ 00208 map(initializer_list<value_type> __l, 00209 const _Compare& __comp = _Compare(), 00210 const allocator_type& __a = allocator_type()) 00211 : _M_t(__comp, _Pair_alloc_type(__a)) 00212 { _M_t._M_insert_unique(__l.begin(), __l.end()); } 00213 00214 /// Allocator-extended default constructor. 00215 explicit 00216 map(const allocator_type& __a) 00217 : _M_t(_Compare(), _Pair_alloc_type(__a)) { } 00218 00219 /// Allocator-extended copy constructor. 00220 map(const map& __m, const allocator_type& __a) 00221 : _M_t(__m._M_t, _Pair_alloc_type(__a)) { } 00222 00223 /// Allocator-extended move constructor. 00224 map(map&& __m, const allocator_type& __a) 00225 noexcept(is_nothrow_copy_constructible<_Compare>::value 00226 && _Alloc_traits::_S_always_equal()) 00227 : _M_t(std::move(__m._M_t), _Pair_alloc_type(__a)) { } 00228 00229 /// Allocator-extended initialier-list constructor. 00230 map(initializer_list<value_type> __l, const allocator_type& __a) 00231 : _M_t(_Compare(), _Pair_alloc_type(__a)) 00232 { _M_t._M_insert_unique(__l.begin(), __l.end()); } 00233 00234 /// Allocator-extended range constructor. 00235 template<typename _InputIterator> 00236 map(_InputIterator __first, _InputIterator __last, 00237 const allocator_type& __a) 00238 : _M_t(_Compare(), _Pair_alloc_type(__a)) 00239 { _M_t._M_insert_unique(__first, __last); } 00240 #endif 00241 00242 /** 00243 * @brief Builds a %map from a range. 00244 * @param __first An input iterator. 00245 * @param __last An input iterator. 00246 * 00247 * Create a %map consisting of copies of the elements from 00248 * [__first,__last). This is linear in N if the range is 00249 * already sorted, and NlogN otherwise (where N is 00250 * distance(__first,__last)). 00251 */ 00252 template<typename _InputIterator> 00253 map(_InputIterator __first, _InputIterator __last) 00254 : _M_t() 00255 { _M_t._M_insert_unique(__first, __last); } 00256 00257 /** 00258 * @brief Builds a %map from a range. 00259 * @param __first An input iterator. 00260 * @param __last An input iterator. 00261 * @param __comp A comparison functor. 00262 * @param __a An allocator object. 00263 * 00264 * Create a %map consisting of copies of the elements from 00265 * [__first,__last). This is linear in N if the range is 00266 * already sorted, and NlogN otherwise (where N is 00267 * distance(__first,__last)). 00268 */ 00269 template<typename _InputIterator> 00270 map(_InputIterator __first, _InputIterator __last, 00271 const _Compare& __comp, 00272 const allocator_type& __a = allocator_type()) 00273 : _M_t(__comp, _Pair_alloc_type(__a)) 00274 { _M_t._M_insert_unique(__first, __last); } 00275 00276 // FIXME There is no dtor declared, but we should have something 00277 // generated by Doxygen. I don't know what tags to add to this 00278 // paragraph to make that happen: 00279 /** 00280 * The dtor only erases the elements, and note that if the elements 00281 * themselves are pointers, the pointed-to memory is not touched in any 00282 * way. Managing the pointer is the user's responsibility. 00283 */ 00284 00285 /** 00286 * @brief %Map assignment operator. 00287 * @param __x A %map of identical element and allocator types. 00288 * 00289 * All the elements of @a __x are copied, but unlike the copy 00290 * constructor, the allocator object is not copied. 00291 */ 00292 map& 00293 operator=(const map& __x) 00294 { 00295 _M_t = __x._M_t; 00296 return *this; 00297 } 00298 00299 #if __cplusplus >= 201103L 00300 /** 00301 * @brief %Map move assignment operator. 00302 * @param __x A %map of identical element and allocator types. 00303 * 00304 * The contents of @a __x are moved into this map (without copying 00305 * if the allocators compare equal or get moved on assignment). 00306 * Afterwards @a __x is in a valid, but unspecified state. 00307 */ 00308 map& 00309 operator=(map&& __x) noexcept(_Alloc_traits::_S_nothrow_move()) 00310 { 00311 if (!_M_t._M_move_assign(__x._M_t)) 00312 { 00313 // The rvalue's allocator cannot be moved and is not equal, 00314 // so we need to individually move each element. 00315 clear(); 00316 insert(std::__make_move_if_noexcept_iterator(__x.begin()), 00317 std::__make_move_if_noexcept_iterator(__x.end())); 00318 __x.clear(); 00319 } 00320 return *this; 00321 } 00322 00323 /** 00324 * @brief %Map list assignment operator. 00325 * @param __l An initializer_list. 00326 * 00327 * This function fills a %map with copies of the elements in the 00328 * initializer list @a __l. 00329 * 00330 * Note that the assignment completely changes the %map and 00331 * that the resulting %map's size is the same as the number 00332 * of elements assigned. Old data may be lost. 00333 */ 00334 map& 00335 operator=(initializer_list<value_type> __l) 00336 { 00337 this->clear(); 00338 this->insert(__l.begin(), __l.end()); 00339 return *this; 00340 } 00341 #endif 00342 00343 /// Get a copy of the memory allocation object. 00344 allocator_type 00345 get_allocator() const _GLIBCXX_NOEXCEPT 00346 { return allocator_type(_M_t.get_allocator()); } 00347 00348 // iterators 00349 /** 00350 * Returns a read/write iterator that points to the first pair in the 00351 * %map. 00352 * Iteration is done in ascending order according to the keys. 00353 */ 00354 iterator 00355 begin() _GLIBCXX_NOEXCEPT 00356 { return _M_t.begin(); } 00357 00358 /** 00359 * Returns a read-only (constant) iterator that points to the first pair 00360 * in the %map. Iteration is done in ascending order according to the 00361 * keys. 00362 */ 00363 const_iterator 00364 begin() const _GLIBCXX_NOEXCEPT 00365 { return _M_t.begin(); } 00366 00367 /** 00368 * Returns a read/write iterator that points one past the last 00369 * pair in the %map. Iteration is done in ascending order 00370 * according to the keys. 00371 */ 00372 iterator 00373 end() _GLIBCXX_NOEXCEPT 00374 { return _M_t.end(); } 00375 00376 /** 00377 * Returns a read-only (constant) iterator that points one past the last 00378 * pair in the %map. Iteration is done in ascending order according to 00379 * the keys. 00380 */ 00381 const_iterator 00382 end() const _GLIBCXX_NOEXCEPT 00383 { return _M_t.end(); } 00384 00385 /** 00386 * Returns a read/write reverse iterator that points to the last pair in 00387 * the %map. Iteration is done in descending order according to the 00388 * keys. 00389 */ 00390 reverse_iterator 00391 rbegin() _GLIBCXX_NOEXCEPT 00392 { return _M_t.rbegin(); } 00393 00394 /** 00395 * Returns a read-only (constant) reverse iterator that points to the 00396 * last pair in the %map. Iteration is done in descending order 00397 * according to the keys. 00398 */ 00399 const_reverse_iterator 00400 rbegin() const _GLIBCXX_NOEXCEPT 00401 { return _M_t.rbegin(); } 00402 00403 /** 00404 * Returns a read/write reverse iterator that points to one before the 00405 * first pair in the %map. Iteration is done in descending order 00406 * according to the keys. 00407 */ 00408 reverse_iterator 00409 rend() _GLIBCXX_NOEXCEPT 00410 { return _M_t.rend(); } 00411 00412 /** 00413 * Returns a read-only (constant) reverse iterator that points to one 00414 * before the first pair in the %map. Iteration is done in descending 00415 * order according to the keys. 00416 */ 00417 const_reverse_iterator 00418 rend() const _GLIBCXX_NOEXCEPT 00419 { return _M_t.rend(); } 00420 00421 #if __cplusplus >= 201103L 00422 /** 00423 * Returns a read-only (constant) iterator that points to the first pair 00424 * in the %map. Iteration is done in ascending order according to the 00425 * keys. 00426 */ 00427 const_iterator 00428 cbegin() const noexcept 00429 { return _M_t.begin(); } 00430 00431 /** 00432 * Returns a read-only (constant) iterator that points one past the last 00433 * pair in the %map. Iteration is done in ascending order according to 00434 * the keys. 00435 */ 00436 const_iterator 00437 cend() const noexcept 00438 { return _M_t.end(); } 00439 00440 /** 00441 * Returns a read-only (constant) reverse iterator that points to the 00442 * last pair in the %map. Iteration is done in descending order 00443 * according to the keys. 00444 */ 00445 const_reverse_iterator 00446 crbegin() const noexcept 00447 { return _M_t.rbegin(); } 00448 00449 /** 00450 * Returns a read-only (constant) reverse iterator that points to one 00451 * before the first pair in the %map. Iteration is done in descending 00452 * order according to the keys. 00453 */ 00454 const_reverse_iterator 00455 crend() const noexcept 00456 { return _M_t.rend(); } 00457 #endif 00458 00459 // capacity 00460 /** Returns true if the %map is empty. (Thus begin() would equal 00461 * end().) 00462 */ 00463 bool 00464 empty() const _GLIBCXX_NOEXCEPT 00465 { return _M_t.empty(); } 00466 00467 /** Returns the size of the %map. */ 00468 size_type 00469 size() const _GLIBCXX_NOEXCEPT 00470 { return _M_t.size(); } 00471 00472 /** Returns the maximum size of the %map. */ 00473 size_type 00474 max_size() const _GLIBCXX_NOEXCEPT 00475 { return _M_t.max_size(); } 00476 00477 // [23.3.1.2] element access 00478 /** 00479 * @brief Subscript ( @c [] ) access to %map data. 00480 * @param __k The key for which data should be retrieved. 00481 * @return A reference to the data of the (key,data) %pair. 00482 * 00483 * Allows for easy lookup with the subscript ( @c [] ) 00484 * operator. Returns data associated with the key specified in 00485 * subscript. If the key does not exist, a pair with that key 00486 * is created using default values, which is then returned. 00487 * 00488 * Lookup requires logarithmic time. 00489 */ 00490 mapped_type& 00491 operator[](const key_type& __k) 00492 { 00493 // concept requirements 00494 __glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>) 00495 00496 iterator __i = lower_bound(__k); 00497 // __i->first is greater than or equivalent to __k. 00498 if (__i == end() || key_comp()(__k, (*__i).first)) 00499 #if __cplusplus >= 201103L 00500 __i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct, 00501 std::tuple<const key_type&>(__k), 00502 std::tuple<>()); 00503 #else 00504 __i = insert(__i, value_type(__k, mapped_type())); 00505 #endif 00506 return (*__i).second; 00507 } 00508 00509 #if __cplusplus >= 201103L 00510 mapped_type& 00511 operator[](key_type&& __k) 00512 { 00513 // concept requirements 00514 __glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>) 00515 00516 iterator __i = lower_bound(__k); 00517 // __i->first is greater than or equivalent to __k. 00518 if (__i == end() || key_comp()(__k, (*__i).first)) 00519 __i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct, 00520 std::forward_as_tuple(std::move(__k)), 00521 std::tuple<>()); 00522 return (*__i).second; 00523 } 00524 #endif 00525 00526 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00527 // DR 464. Suggestion for new member functions in standard containers. 00528 /** 00529 * @brief Access to %map data. 00530 * @param __k The key for which data should be retrieved. 00531 * @return A reference to the data whose key is equivalent to @a __k, if 00532 * such a data is present in the %map. 00533 * @throw std::out_of_range If no such data is present. 00534 */ 00535 mapped_type& 00536 at(const key_type& __k) 00537 { 00538 iterator __i = lower_bound(__k); 00539 if (__i == end() || key_comp()(__k, (*__i).first)) 00540 __throw_out_of_range(__N("map::at")); 00541 return (*__i).second; 00542 } 00543 00544 const mapped_type& 00545 at(const key_type& __k) const 00546 { 00547 const_iterator __i = lower_bound(__k); 00548 if (__i == end() || key_comp()(__k, (*__i).first)) 00549 __throw_out_of_range(__N("map::at")); 00550 return (*__i).second; 00551 } 00552 00553 // modifiers 00554 #if __cplusplus >= 201103L 00555 /** 00556 * @brief Attempts to build and insert a std::pair into the %map. 00557 * 00558 * @param __args Arguments used to generate a new pair instance (see 00559 * std::piecewise_contruct for passing arguments to each 00560 * part of the pair constructor). 00561 * 00562 * @return A pair, of which the first element is an iterator that points 00563 * to the possibly inserted pair, and the second is a bool that 00564 * is true if the pair was actually inserted. 00565 * 00566 * This function attempts to build and insert a (key, value) %pair into 00567 * the %map. 00568 * A %map relies on unique keys and thus a %pair is only inserted if its 00569 * first element (the key) is not already present in the %map. 00570 * 00571 * Insertion requires logarithmic time. 00572 */ 00573 template<typename... _Args> 00574 std::pair<iterator, bool> 00575 emplace(_Args&&... __args) 00576 { return _M_t._M_emplace_unique(std::forward<_Args>(__args)...); } 00577 00578 /** 00579 * @brief Attempts to build and insert a std::pair into the %map. 00580 * 00581 * @param __pos An iterator that serves as a hint as to where the pair 00582 * should be inserted. 00583 * @param __args Arguments used to generate a new pair instance (see 00584 * std::piecewise_contruct for passing arguments to each 00585 * part of the pair constructor). 00586 * @return An iterator that points to the element with key of the 00587 * std::pair built from @a __args (may or may not be that 00588 * std::pair). 00589 * 00590 * This function is not concerned about whether the insertion took place, 00591 * and thus does not return a boolean like the single-argument emplace() 00592 * does. 00593 * Note that the first parameter is only a hint and can potentially 00594 * improve the performance of the insertion process. A bad hint would 00595 * cause no gains in efficiency. 00596 * 00597 * See 00598 * http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt07ch17.html 00599 * for more on @a hinting. 00600 * 00601 * Insertion requires logarithmic time (if the hint is not taken). 00602 */ 00603 template<typename... _Args> 00604 iterator 00605 emplace_hint(const_iterator __pos, _Args&&... __args) 00606 { 00607 return _M_t._M_emplace_hint_unique(__pos, 00608 std::forward<_Args>(__args)...); 00609 } 00610 #endif 00611 00612 /** 00613 * @brief Attempts to insert a std::pair into the %map. 00614 00615 * @param __x Pair to be inserted (see std::make_pair for easy 00616 * creation of pairs). 00617 * 00618 * @return A pair, of which the first element is an iterator that 00619 * points to the possibly inserted pair, and the second is 00620 * a bool that is true if the pair was actually inserted. 00621 * 00622 * This function attempts to insert a (key, value) %pair into the %map. 00623 * A %map relies on unique keys and thus a %pair is only inserted if its 00624 * first element (the key) is not already present in the %map. 00625 * 00626 * Insertion requires logarithmic time. 00627 */ 00628 std::pair<iterator, bool> 00629 insert(const value_type& __x) 00630 { return _M_t._M_insert_unique(__x); } 00631 00632 #if __cplusplus >= 201103L 00633 template<typename _Pair, typename = typename 00634 std::enable_if<std::is_constructible<value_type, 00635 _Pair&&>::value>::type> 00636 std::pair<iterator, bool> 00637 insert(_Pair&& __x) 00638 { return _M_t._M_insert_unique(std::forward<_Pair>(__x)); } 00639 #endif 00640 00641 #if __cplusplus >= 201103L 00642 /** 00643 * @brief Attempts to insert a list of std::pairs into the %map. 00644 * @param __list A std::initializer_list<value_type> of pairs to be 00645 * inserted. 00646 * 00647 * Complexity similar to that of the range constructor. 00648 */ 00649 void 00650 insert(std::initializer_list<value_type> __list) 00651 { insert(__list.begin(), __list.end()); } 00652 #endif 00653 00654 /** 00655 * @brief Attempts to insert a std::pair into the %map. 00656 * @param __position An iterator that serves as a hint as to where the 00657 * pair should be inserted. 00658 * @param __x Pair to be inserted (see std::make_pair for easy creation 00659 * of pairs). 00660 * @return An iterator that points to the element with key of 00661 * @a __x (may or may not be the %pair passed in). 00662 * 00663 00664 * This function is not concerned about whether the insertion 00665 * took place, and thus does not return a boolean like the 00666 * single-argument insert() does. Note that the first 00667 * parameter is only a hint and can potentially improve the 00668 * performance of the insertion process. A bad hint would 00669 * cause no gains in efficiency. 00670 * 00671 * See 00672 * http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt07ch17.html 00673 * for more on @a hinting. 00674 * 00675 * Insertion requires logarithmic time (if the hint is not taken). 00676 */ 00677 iterator 00678 #if __cplusplus >= 201103L 00679 insert(const_iterator __position, const value_type& __x) 00680 #else 00681 insert(iterator __position, const value_type& __x) 00682 #endif 00683 { return _M_t._M_insert_unique_(__position, __x); } 00684 00685 #if __cplusplus >= 201103L 00686 template<typename _Pair, typename = typename 00687 std::enable_if<std::is_constructible<value_type, 00688 _Pair&&>::value>::type> 00689 iterator 00690 insert(const_iterator __position, _Pair&& __x) 00691 { return _M_t._M_insert_unique_(__position, 00692 std::forward<_Pair>(__x)); } 00693 #endif 00694 00695 /** 00696 * @brief Template function that attempts to insert a range of elements. 00697 * @param __first Iterator pointing to the start of the range to be 00698 * inserted. 00699 * @param __last Iterator pointing to the end of the range. 00700 * 00701 * Complexity similar to that of the range constructor. 00702 */ 00703 template<typename _InputIterator> 00704 void 00705 insert(_InputIterator __first, _InputIterator __last) 00706 { _M_t._M_insert_unique(__first, __last); } 00707 00708 #if __cplusplus >= 201103L 00709 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00710 // DR 130. Associative erase should return an iterator. 00711 /** 00712 * @brief Erases an element from a %map. 00713 * @param __position An iterator pointing to the element to be erased. 00714 * @return An iterator pointing to the element immediately following 00715 * @a position prior to the element being erased. If no such 00716 * element exists, end() is returned. 00717 * 00718 * This function erases an element, pointed to by the given 00719 * iterator, from a %map. Note that this function only erases 00720 * the element, and that if the element is itself a pointer, 00721 * the pointed-to memory is not touched in any way. Managing 00722 * the pointer is the user's responsibility. 00723 */ 00724 iterator 00725 erase(const_iterator __position) 00726 { return _M_t.erase(__position); } 00727 00728 // LWG 2059 00729 _GLIBCXX_ABI_TAG_CXX11 00730 iterator 00731 erase(iterator __position) 00732 { return _M_t.erase(__position); } 00733 #else 00734 /** 00735 * @brief Erases an element from a %map. 00736 * @param __position An iterator pointing to the element to be erased. 00737 * 00738 * This function erases an element, pointed to by the given 00739 * iterator, from a %map. Note that this function only erases 00740 * the element, and that if the element is itself a pointer, 00741 * the pointed-to memory is not touched in any way. Managing 00742 * the pointer is the user's responsibility. 00743 */ 00744 void 00745 erase(iterator __position) 00746 { _M_t.erase(__position); } 00747 #endif 00748 00749 /** 00750 * @brief Erases elements according to the provided key. 00751 * @param __x Key of element to be erased. 00752 * @return The number of elements erased. 00753 * 00754 * This function erases all the elements located by the given key from 00755 * a %map. 00756 * Note that this function only erases the element, and that if 00757 * the element is itself a pointer, the pointed-to memory is not touched 00758 * in any way. Managing the pointer is the user's responsibility. 00759 */ 00760 size_type 00761 erase(const key_type& __x) 00762 { return _M_t.erase(__x); } 00763 00764 #if __cplusplus >= 201103L 00765 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00766 // DR 130. Associative erase should return an iterator. 00767 /** 00768 * @brief Erases a [first,last) range of elements from a %map. 00769 * @param __first Iterator pointing to the start of the range to be 00770 * erased. 00771 * @param __last Iterator pointing to the end of the range to 00772 * be erased. 00773 * @return The iterator @a __last. 00774 * 00775 * This function erases a sequence of elements from a %map. 00776 * Note that this function only erases the element, and that if 00777 * the element is itself a pointer, the pointed-to memory is not touched 00778 * in any way. Managing the pointer is the user's responsibility. 00779 */ 00780 iterator 00781 erase(const_iterator __first, const_iterator __last) 00782 { return _M_t.erase(__first, __last); } 00783 #else 00784 /** 00785 * @brief Erases a [__first,__last) range of elements from a %map. 00786 * @param __first Iterator pointing to the start of the range to be 00787 * erased. 00788 * @param __last Iterator pointing to the end of the range to 00789 * be erased. 00790 * 00791 * This function erases a sequence of elements from a %map. 00792 * Note that this function only erases the element, and that if 00793 * the element is itself a pointer, the pointed-to memory is not touched 00794 * in any way. Managing the pointer is the user's responsibility. 00795 */ 00796 void 00797 erase(iterator __first, iterator __last) 00798 { _M_t.erase(__first, __last); } 00799 #endif 00800 00801 /** 00802 * @brief Swaps data with another %map. 00803 * @param __x A %map of the same element and allocator types. 00804 * 00805 * This exchanges the elements between two maps in constant 00806 * time. (It is only swapping a pointer, an integer, and an 00807 * instance of the @c Compare type (which itself is often 00808 * stateless and empty), so it should be quite fast.) Note 00809 * that the global std::swap() function is specialized such 00810 * that std::swap(m1,m2) will feed to this function. 00811 */ 00812 void 00813 swap(map& __x) 00814 #if __cplusplus >= 201103L 00815 noexcept(_Alloc_traits::_S_nothrow_swap()) 00816 #endif 00817 { _M_t.swap(__x._M_t); } 00818 00819 /** 00820 * Erases all elements in a %map. Note that this function only 00821 * erases the elements, and that if the elements themselves are 00822 * pointers, the pointed-to memory is not touched in any way. 00823 * Managing the pointer is the user's responsibility. 00824 */ 00825 void 00826 clear() _GLIBCXX_NOEXCEPT 00827 { _M_t.clear(); } 00828 00829 // observers 00830 /** 00831 * Returns the key comparison object out of which the %map was 00832 * constructed. 00833 */ 00834 key_compare 00835 key_comp() const 00836 { return _M_t.key_comp(); } 00837 00838 /** 00839 * Returns a value comparison object, built from the key comparison 00840 * object out of which the %map was constructed. 00841 */ 00842 value_compare 00843 value_comp() const 00844 { return value_compare(_M_t.key_comp()); } 00845 00846 // [23.3.1.3] map operations 00847 /** 00848 * @brief Tries to locate an element in a %map. 00849 * @param __x Key of (key, value) %pair to be located. 00850 * @return Iterator pointing to sought-after element, or end() if not 00851 * found. 00852 * 00853 * This function takes a key and tries to locate the element with which 00854 * the key matches. If successful the function returns an iterator 00855 * pointing to the sought after %pair. If unsuccessful it returns the 00856 * past-the-end ( @c end() ) iterator. 00857 */ 00858 iterator 00859 find(const key_type& __x) 00860 { return _M_t.find(__x); } 00861 00862 /** 00863 * @brief Tries to locate an element in a %map. 00864 * @param __x Key of (key, value) %pair to be located. 00865 * @return Read-only (constant) iterator pointing to sought-after 00866 * element, or end() if not found. 00867 * 00868 * This function takes a key and tries to locate the element with which 00869 * the key matches. If successful the function returns a constant 00870 * iterator pointing to the sought after %pair. If unsuccessful it 00871 * returns the past-the-end ( @c end() ) iterator. 00872 */ 00873 const_iterator 00874 find(const key_type& __x) const 00875 { return _M_t.find(__x); } 00876 00877 /** 00878 * @brief Finds the number of elements with given key. 00879 * @param __x Key of (key, value) pairs to be located. 00880 * @return Number of elements with specified key. 00881 * 00882 * This function only makes sense for multimaps; for map the result will 00883 * either be 0 (not present) or 1 (present). 00884 */ 00885 size_type 00886 count(const key_type& __x) const 00887 { return _M_t.find(__x) == _M_t.end() ? 0 : 1; } 00888 00889 /** 00890 * @brief Finds the beginning of a subsequence matching given key. 00891 * @param __x Key of (key, value) pair to be located. 00892 * @return Iterator pointing to first element equal to or greater 00893 * than key, or end(). 00894 * 00895 * This function returns the first element of a subsequence of elements 00896 * that matches the given key. If unsuccessful it returns an iterator 00897 * pointing to the first element that has a greater value than given key 00898 * or end() if no such element exists. 00899 */ 00900 iterator 00901 lower_bound(const key_type& __x) 00902 { return _M_t.lower_bound(__x); } 00903 00904 /** 00905 * @brief Finds the beginning of a subsequence matching given key. 00906 * @param __x Key of (key, value) pair to be located. 00907 * @return Read-only (constant) iterator pointing to first element 00908 * equal to or greater than key, or end(). 00909 * 00910 * This function returns the first element of a subsequence of elements 00911 * that matches the given key. If unsuccessful it returns an iterator 00912 * pointing to the first element that has a greater value than given key 00913 * or end() if no such element exists. 00914 */ 00915 const_iterator 00916 lower_bound(const key_type& __x) const 00917 { return _M_t.lower_bound(__x); } 00918 00919 /** 00920 * @brief Finds the end of a subsequence matching given key. 00921 * @param __x Key of (key, value) pair to be located. 00922 * @return Iterator pointing to the first element 00923 * greater than key, or end(). 00924 */ 00925 iterator 00926 upper_bound(const key_type& __x) 00927 { return _M_t.upper_bound(__x); } 00928 00929 /** 00930 * @brief Finds the end of a subsequence matching given key. 00931 * @param __x Key of (key, value) pair to be located. 00932 * @return Read-only (constant) iterator pointing to first iterator 00933 * greater than key, or end(). 00934 */ 00935 const_iterator 00936 upper_bound(const key_type& __x) const 00937 { return _M_t.upper_bound(__x); } 00938 00939 /** 00940 * @brief Finds a subsequence matching given key. 00941 * @param __x Key of (key, value) pairs to be located. 00942 * @return Pair of iterators that possibly points to the subsequence 00943 * matching given key. 00944 * 00945 * This function is equivalent to 00946 * @code 00947 * std::make_pair(c.lower_bound(val), 00948 * c.upper_bound(val)) 00949 * @endcode 00950 * (but is faster than making the calls separately). 00951 * 00952 * This function probably only makes sense for multimaps. 00953 */ 00954 std::pair<iterator, iterator> 00955 equal_range(const key_type& __x) 00956 { return _M_t.equal_range(__x); } 00957 00958 /** 00959 * @brief Finds a subsequence matching given key. 00960 * @param __x Key of (key, value) pairs to be located. 00961 * @return Pair of read-only (constant) iterators that possibly points 00962 * to the subsequence matching given key. 00963 * 00964 * This function is equivalent to 00965 * @code 00966 * std::make_pair(c.lower_bound(val), 00967 * c.upper_bound(val)) 00968 * @endcode 00969 * (but is faster than making the calls separately). 00970 * 00971 * This function probably only makes sense for multimaps. 00972 */ 00973 std::pair<const_iterator, const_iterator> 00974 equal_range(const key_type& __x) const 00975 { return _M_t.equal_range(__x); } 00976 00977 template<typename _K1, typename _T1, typename _C1, typename _A1> 00978 friend bool 00979 operator==(const map<_K1, _T1, _C1, _A1>&, 00980 const map<_K1, _T1, _C1, _A1>&); 00981 00982 template<typename _K1, typename _T1, typename _C1, typename _A1> 00983 friend bool 00984 operator<(const map<_K1, _T1, _C1, _A1>&, 00985 const map<_K1, _T1, _C1, _A1>&); 00986 }; 00987 00988 /** 00989 * @brief Map equality comparison. 00990 * @param __x A %map. 00991 * @param __y A %map of the same type as @a x. 00992 * @return True iff the size and elements of the maps are equal. 00993 * 00994 * This is an equivalence relation. It is linear in the size of the 00995 * maps. Maps are considered equivalent if their sizes are equal, 00996 * and if corresponding elements compare equal. 00997 */ 00998 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00999 inline bool 01000 operator==(const map<_Key, _Tp, _Compare, _Alloc>& __x, 01001 const map<_Key, _Tp, _Compare, _Alloc>& __y) 01002 { return __x._M_t == __y._M_t; } 01003 01004 /** 01005 * @brief Map ordering relation. 01006 * @param __x A %map. 01007 * @param __y A %map of the same type as @a x. 01008 * @return True iff @a x is lexicographically less than @a y. 01009 * 01010 * This is a total ordering relation. It is linear in the size of the 01011 * maps. The elements must be comparable with @c <. 01012 * 01013 * See std::lexicographical_compare() for how the determination is made. 01014 */ 01015 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 01016 inline bool 01017 operator<(const map<_Key, _Tp, _Compare, _Alloc>& __x, 01018 const map<_Key, _Tp, _Compare, _Alloc>& __y) 01019 { return __x._M_t < __y._M_t; } 01020 01021 /// Based on operator== 01022 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 01023 inline bool 01024 operator!=(const map<_Key, _Tp, _Compare, _Alloc>& __x, 01025 const map<_Key, _Tp, _Compare, _Alloc>& __y) 01026 { return !(__x == __y); } 01027 01028 /// Based on operator< 01029 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 01030 inline bool 01031 operator>(const map<_Key, _Tp, _Compare, _Alloc>& __x, 01032 const map<_Key, _Tp, _Compare, _Alloc>& __y) 01033 { return __y < __x; } 01034 01035 /// Based on operator< 01036 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 01037 inline bool 01038 operator<=(const map<_Key, _Tp, _Compare, _Alloc>& __x, 01039 const map<_Key, _Tp, _Compare, _Alloc>& __y) 01040 { return !(__y < __x); } 01041 01042 /// Based on operator< 01043 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 01044 inline bool 01045 operator>=(const map<_Key, _Tp, _Compare, _Alloc>& __x, 01046 const map<_Key, _Tp, _Compare, _Alloc>& __y) 01047 { return !(__x < __y); } 01048 01049 /// See std::map::swap(). 01050 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 01051 inline void 01052 swap(map<_Key, _Tp, _Compare, _Alloc>& __x, 01053 map<_Key, _Tp, _Compare, _Alloc>& __y) 01054 { __x.swap(__y); } 01055 01056 _GLIBCXX_END_NAMESPACE_CONTAINER 01057 } // namespace std 01058 01059 #endif /* _STL_MAP_H */