contains 94 rules |
System Settings
[ref]groupContains rules that check correct system settings. |
contains 90 rules |
Installing and Maintaining Software
[ref]groupThe following sections contain information on
security-relevant choices during the initial operating system
installation process and the setup of software
updates. |
contains 15 rules |
Updating Software
[ref]groupThe yum command line tool is used to install and
update software packages. The system also provides a graphical
software update tool in the System menu, in the Administration submenu,
called Software Update.
Oracle Linux systems contain an installed software catalog called
the RPM database, which records metadata of installed packages. Consistently using
yum or the graphical Software Update for all software installation
allows for insight into the current inventory of installed software on the system.
|
contains 4 rules |
Ensure gpgcheck Enabled In Main Yum Configuration
[ref]ruleThe gpgcheck option controls whether
RPM packages' signatures are always checked prior to installation.
To configure yum to check package signatures before installing
them, ensure the following line appears in /etc/yum.conf in
the [main] section:
gpgcheck=1
Rationale:
Changes to any software components can have significant effects on the overall security
of the operating system. This requirement ensures the software has not been tampered with
and that it has been provided by a trusted vendor.
Accordingly, patches, service packs, device drivers, or operating system components must
be signed with a certificate recognized and approved by the organization.
Verifying the authenticity of the software prior to installation
validates the integrity of the patch or upgrade received from
a vendor. This ensures the software has not been tampered with and
that it has been provided by a trusted vendor. Self-signed
certificates are disallowed by this requirement. Certificates
used to verify the software must be from an approved Certificate
Authority (CA).
Remediation Shell script: (show)
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects four arguments:
#
# config_file: Configuration file that will be modified
# key: Configuration option to change
# value: Value of the configuration option to change
# cce: The CCE identifier or '@CCENUM@' if no CCE identifier exists
#
# Optional arugments:
#
# format: Optional argument to specify the format of how key/value should be
# modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
# With default format of 'key = value':
# replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
# With custom key/value format:
# replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
# With a variable:
# replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
local config_file=$1
local key=$2
local value=$3
local cce=$4
local format=$5
# Check sanity of the input
if [ $# -lt "3" ]
then
echo "Usage: replace_or_append 'config_file_location' 'key_to_search' 'new_value'"
echo
echo "If symlinks need to be taken into account, add yes/no to the last argument"
echo "to allow to 'follow_symlinks'."
echo "Aborting."
exit 1
fi
# Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
# Otherwise, regular sed command will do.
if test -L $config_file; then
sed_command="sed -i --follow-symlinks"
else
sed_command="sed -i"
fi
# Test that the cce arg is not empty or does not equal @CCENUM@.
# If @CCENUM@ exists, it means that there is no CCE assigned.
if ! [ "x$cce" = x ] && [ "$cce" != '@CCENUM@' ]; then
cce="CCE-${cce}"
else
cce="CCE"
fi
# Strip any search characters in the key arg so that the key can be replaced without
# adding any search characters to the config file.
stripped_key=$(sed "s/[\^=\$,;+]*//g" <<< $key)
# If there is no print format specified in the last arg, use the default format.
if ! [ "x$format" = x ] ; then
printf -v formatted_output "$format" "$stripped_key" "$value"
else
formatted_output="$stripped_key = $value"
fi
# If the key exists, change it. Otherwise, add it to the config_file.
if `grep -qi "$key" $config_file` ; then
eval '$sed_command "s/$key.*/$formatted_output/g" $config_file'
else
# \n is precaution for case where file ends without trailing newline
echo -e "\n# Per $cce: Set $formatted_output in $config_file" >> $config_file
echo -e "$formatted_output" >> $config_file
fi
}
replace_or_append '/etc/yum.conf' '^gpgcheck' '1' 'CCE-26989-4'
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | medium |
---|
- name: Check existence of yum on Fedora
stat:
path: /etc/yum.conf
register: yum_config_file
check_mode: no
when: ansible_distribution == "Fedora"
# Old versions of Fedora use yum
- name: Ensure GPG check is globally activated (yum)
ini_file:
dest: "{{item}}"
section: main
option: gpgcheck
value: 1
create: False
with_items: "/etc/yum.conf"
when: ansible_distribution == "RedHat" or ansible_distribution == "CentOS" or yum_config_file.stat.exists
tags:
- ensure_gpgcheck_globally_activated
- high_severity
- unknown_strategy
- low_complexity
- medium_disruption
- CCE-26989-4
- NIST-800-53-CM-5(3)
- NIST-800-53-SI-7
- NIST-800-53-MA-1(b)
- NIST-800-171-3.4.8
- PCI-DSS-Req-6.2
- CJIS-5.10.4.1
- DISA-STIG-OL-07-020050
- name: Ensure GPG check is globally activated (dnf)
ini_file:
dest: "{{item}}"
section: main
option: gpgcheck
value: 1
create: False
with_items: "/etc/dnf/dnf.conf"
when: ansible_distribution == "Fedora"
tags:
- ensure_gpgcheck_globally_activated
- high_severity
- unknown_strategy
- low_complexity
- medium_disruption
- CCE-26989-4
- NIST-800-53-CM-5(3)
- NIST-800-53-SI-7
- NIST-800-53-MA-1(b)
- NIST-800-171-3.4.8
- PCI-DSS-Req-6.2
- CJIS-5.10.4.1
- DISA-STIG-OL-07-020050
|
Ensure gpgcheck Enabled For All Yum Package Repositories
[ref]ruleTo ensure signature checking is not disabled for
any repos, remove any lines from files in /etc/yum.repos.d of the form:
gpgcheck=0
Rationale:
Verifying the authenticity of the software prior to installation
validates the integrity of the patch or upgrade received from
a vendor. This ensures the software has not been tampered with and
that it has been provided by a trusted vendor. Self-signed
certificates are disallowed by this requirement. Certificates
used to verify the software must be from an approved Certificate
Authority (CA).
Remediation Shell script: (show)
sed -i 's/gpgcheck=.*/gpgcheck=1/g' /etc/yum.repos.d/*
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | medium |
---|
#
- name: Find All Yum Repositories
find:
paths: "/etc/yum.repos.d/"
patterns: "*.repo"
register: yum_find
- name: Ensure gpgcheck Enabled For All Yum Package Repositories
with_items: "{{ yum_find.files }}"
lineinfile:
create: yes
dest: "{{ item.path }}"
regexp: '^gpgcheck'
line: 'gpgcheck=1'
tags:
- ensure_gpgcheck_never_disabled
- high_severity
- unknown_strategy
- low_complexity
- medium_disruption
- CCE-26876-3
- NIST-800-53-CM-5(3)
- NIST-800-53-SI-7
- NIST-800-53-MA-1(b)
- NIST-800-171-3.4.8
- PCI-DSS-Req-6.2
- CJIS-5.10.4.1
|
Ensure Software Patches Installed
[ref]ruleIf the system is joined to the ULN or a yum server, run the following command to install updates:
$ sudo yum update
If the system is not configured to use one of these sources, updates (in the form of RPM packages)
can be manually downloaded from the ULN and installed using rpm .
NOTE: U.S. Defense systems are required to be patched within 30 days or sooner as local policy
dictates.
Rationale:
Installing software updates is a fundamental mitigation against
the exploitation of publicly-known vulnerabilities. If the most
recent security patches and updates are not installed, unauthorized
users may take advantage of weaknesses in the unpatched software. The
lack of prompt attention to patching could result in a system compromise.
Remediation Shell script: (show)
Complexity: | low |
---|
Disruption: | high |
---|
Reboot: | true |
---|
Strategy: | patch |
---|
yum -y update
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | high |
---|
Reboot: | true |
---|
Strategy: | patch |
---|
- name: "Security patches are up to date"
package:
name: "*"
state: "latest"
tags:
- security_patches_up_to_date
- high_severity
- patch_strategy
- low_complexity
- high_disruption
- CCE-26895-3
- NIST-800-53-SI-2
- NIST-800-53-SI-2(c)
- NIST-800-53-MA-1(b)
- PCI-DSS-Req-6.2
- CJIS-5.10.4.1
- DISA-STIG-OL-07-020260
|
Ensure Oracle Linux GPG Key Installed
[ref]rule
To ensure the system can cryptographically verify base software
packages come from Oracle (and to connect to the Unbreakable Linux Network to
receive them), the Oracle GPG key must properly be installed.
To install the Oracle GPG key, run:
$ sudo uln_register
If the system is not connected to the Internet,
then install the Oracle GPG key from trusted media such as
the Oracle installation CD-ROM or DVD. Assuming the disc is mounted
in /media/cdrom , use the following command as the root user to import
it into the keyring:
$ sudo rpm --import /media/cdrom/RPM-GPG-KEY
Rationale:
Changes to software components can have significant effects on the
overall security of the operating system. This requirement ensures
the software has not been tampered with and that it has been provided
by a trusted vendor. The Oracle GPG key is necessary to
cryptographically verify packages are from Oracle.
Remediation Shell script: (show)
# OL fingerprints below retrieved from "Oracle Linux Unbreakable Linux Network User's Guide"
# https://docs.oracle.com/cd/E37670_01/E39381/html/ol_import_gpg.html
readonly OL_FINGERPRINT="4214 4123 FECF C55B 9086 313D 72F9 7B74 EC55 1F03"
# Location of the key we would like to import (once it's integrity verified)
readonly OL_RELEASE_KEY="/etc/pki/rpm-gpg/RPM-GPG-KEY-oracle"
RPM_GPG_DIR_PERMS=$(stat -c %a "$(dirname "$OL_RELEASE_KEY")")
# Verify /etc/pki/rpm-gpg directory permissions are safe
if [ "${RPM_GPG_DIR_PERMS}" -le "755" ]
then
# If they are safe, try to obtain fingerprints from the key file
# (to ensure there won't be e.g. CRC error)
IFS=$'\n' GPG_OUT=($(gpg --with-fingerprint "${OL_RELEASE_KEY}"))
GPG_RESULT=$?
# No CRC error, safe to proceed
if [ "${GPG_RESULT}" -eq "0" ]
then
for ITEM in "${GPG_OUT[@]}"
do
# Filter just hexadecimal fingerprints from gpg's output from
# processing of a key file
RESULT=$(echo ${ITEM} | sed -n "s/[[:space:]]*Key fingerprint = \(.*\)/\1/p" | tr -s '[:space:]')
# If fingerprint matches Oracle Linux 6 and 7 key import the key
if [[ ${RESULT} ]] && [[ ${RESULT} = "${OL_FINGERPRINT}" ]]
then
rpm --import "${OL_RELEASE_KEY}"
fi
done
fi
fi
|
System and Software Integrity
[ref]group
System and software integrity can be gained by installing antivirus, increasing
system encryption strength with FIPS, verifying installed software, enabling SELinux,
installing an Intrusion Prevention System, etc. However, installing or enabling integrity
checking tools cannot prevent intrusions, but they can detect that an intrusion
may have occurred. Requirements for integrity checking may be highly dependent on
the environment in which the system will be used. Snapshot-based approaches such
as AIDE may induce considerable overhead in the presence of frequent software updates.
|
contains 7 rules |
Software Integrity Checking
[ref]group
Both the AIDE (Advanced Intrusion Detection Environment)
software and the RPM package management system provide
mechanisms for verifying the integrity of installed software.
AIDE uses snapshots of file metadata (such as hashes) and compares these
to current system files in order to detect changes.
The RPM package management system can conduct integrity
checks by comparing information in its metadata database with
files installed on the system.
|
contains 5 rules |
Verify Integrity with AIDE
[ref]groupAIDE conducts integrity checks by comparing information about
files with previously-gathered information. Ideally, the AIDE database is
created immediately after initial system configuration, and then again after any
software update. AIDE is highly configurable, with further configuration
information located in /usr/share/doc/aide-VERSION .
|
contains 3 rules |
Install AIDE
[ref]rule
Install the AIDE package with the command:
$ sudo yum install aide
Rationale:
The AIDE package must be installed if it is to be available for integrity checking.
Remediation Shell script: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Strategy: | enable |
---|
# Function to install or uninstall packages on RHEL and Fedora systems.
#
# Example Call(s):
#
# package_command install aide
# package_command remove telnet-server
#
function package_command {
# Load function arguments into local variables
local package_operation=$1
local package=$2
# Check sanity of the input
if [ $# -ne "2" ]
then
echo "Usage: package_command 'install/uninstall' 'rpm_package_name"
echo "Aborting."
exit 1
fi
# If dnf is installed, use dnf; otherwise, use yum
if [ -f "/usr/bin/dnf" ] ; then
install_util="/usr/bin/dnf"
else
install_util="/usr/bin/yum"
fi
if [ "$package_operation" != 'remove' ] ; then
# If the rpm is not installed, install the rpm
if ! /bin/rpm -q --quiet $package; then
$install_util -y $package_operation $package
fi
else
# If the rpm is installed, uninstall the rpm
if /bin/rpm -q --quiet $package; then
$install_util -y $package_operation $package
fi
fi
}
package_command install aide
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Strategy: | enable |
---|
- name: Ensure aide is installed
package:
name="{{item}}"
state=present
with_items:
- aide
tags:
- package_aide_installed
- medium_severity
- enable_strategy
- low_complexity
- low_disruption
- CCE-27096-7
- NIST-800-53-CM-3(d)
- NIST-800-53-CM-3(e)
- NIST-800-53-CM-6(d)
- NIST-800-53-CM-6(3)
- NIST-800-53-SC-28
- NIST-800-53-SI-7
- PCI-DSS-Req-11.5
- CJIS-5.10.1.3
Remediation Puppet snippet: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Strategy: | enable |
---|
include install_aide
class install_aide {
package { 'aide':
ensure => 'installed',
}
}
Remediation Anaconda snippet: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Strategy: | enable |
---|
package --add=aide
|
Build and Test AIDE Database
[ref]ruleRun the following command to generate a new database:
$ sudo /usr/sbin/aide --init
By default, the database will be written to the file /var/lib/aide/aide.db.new.gz .
Storing the database, the configuration file /etc/aide.conf , and the binary
/usr/sbin/aide (or hashes of these files), in a secure location (such as on read-only media) provides additional assurance about their integrity.
The newly-generated database can be installed as follows:
$ sudo cp /var/lib/aide/aide.db.new.gz /var/lib/aide/aide.db.gz
To initiate a manual check, run the following command:
$ sudo /usr/sbin/aide --check
If this check produces any unexpected output, investigate.
Rationale:
For AIDE to be effective, an initial database of "known-good" information about files
must be captured and it should be able to be verified against the installed files.
Remediation Shell script: (show)
# Function to install or uninstall packages on RHEL and Fedora systems.
#
# Example Call(s):
#
# package_command install aide
# package_command remove telnet-server
#
function package_command {
# Load function arguments into local variables
local package_operation=$1
local package=$2
# Check sanity of the input
if [ $# -ne "2" ]
then
echo "Usage: package_command 'install/uninstall' 'rpm_package_name"
echo "Aborting."
exit 1
fi
# If dnf is installed, use dnf; otherwise, use yum
if [ -f "/usr/bin/dnf" ] ; then
install_util="/usr/bin/dnf"
else
install_util="/usr/bin/yum"
fi
if [ "$package_operation" != 'remove' ] ; then
# If the rpm is not installed, install the rpm
if ! /bin/rpm -q --quiet $package; then
$install_util -y $package_operation $package
fi
else
# If the rpm is installed, uninstall the rpm
if /bin/rpm -q --quiet $package; then
$install_util -y $package_operation $package
fi
fi
}
package_command install aide
/usr/sbin/aide --init
/bin/cp -p /var/lib/aide/aide.db.new.gz /var/lib/aide/aide.db.gz
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Strategy: | restrict |
---|
- name: "Ensure AIDE is installed"
package:
name="{{item}}"
state=present
with_items:
- aide
tags:
- aide_build_database
- medium_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27220-3
- NIST-800-53-CM-3(d)
- NIST-800-53-CM-3(e)
- NIST-800-53-CM-6(d)
- NIST-800-53-CM-6(3)
- NIST-800-53-SC-28
- NIST-800-53-SI-7
- PCI-DSS-Req-11.5
- CJIS-5.10.1.3
- name: "Build and Test AIDE Database"
shell: /usr/sbin/aide --init
tags:
- aide_build_database
- medium_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27220-3
- NIST-800-53-CM-3(d)
- NIST-800-53-CM-3(e)
- NIST-800-53-CM-6(d)
- NIST-800-53-CM-6(3)
- NIST-800-53-SC-28
- NIST-800-53-SI-7
- PCI-DSS-Req-11.5
- CJIS-5.10.1.3
- name: Stage AIDE Database"
copy:
src: /var/lib/aide/aide.db.new.gz
dest: /var/lib/aide/aide.db.gz
backup: yes
remote_src: yes
tags:
- aide_build_database
- medium_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27220-3
- NIST-800-53-CM-3(d)
- NIST-800-53-CM-3(e)
- NIST-800-53-CM-6(d)
- NIST-800-53-CM-6(3)
- NIST-800-53-SC-28
- NIST-800-53-SI-7
- PCI-DSS-Req-11.5
- CJIS-5.10.1.3
|
Configure Periodic Execution of AIDE
[ref]rule
At a minimum, AIDE should be configured to run a weekly scan. At most, AIDE should be run daily.
To implement a daily execution of AIDE at 4:05am using cron, add the following line to /etc/crontab :
05 4 * * * root /usr/sbin/aide --check
To implement a weekly execution of AIDE at 4:05am using cron, add the following line to /etc/crontab :
05 4 * * 0 root /usr/sbin/aide --check
AIDE can be executed periodically through other means; this is merely one example.
Rationale:
By default, AIDE does not install itself for periodic execution. Periodically
running AIDE is necessary to reveal unexpected changes in installed files.
Unauthorized changes to the baseline configuration could make the system vulnerable
to various attacks or allow unauthorized access to the operating system. Changes to
operating system configurations can have unintended side effects, some of which may
be relevant to security.
Detecting such changes and providing an automated response can help avoid unintended,
negative consequences that could ultimately affect the security state of the operating
system. The operating system's Information Management Officer (IMO)/Information System
Security Officer (ISSO) and System Administrators (SAs) must be notified via email and/or
monitoring system trap when there is an unauthorized modification of a configuration item.
Identifiers:
CCE-26952-2 References:
OL-07-020030, CM-3(d), CM-3(e), CM-3(5), CM-6(d), CM-6(3), SC-28, SI-7, CCI-001744, Req-11.5, 1.3.2, SRG-OS-000363-GPOS-00150, 5.10.1.3 Remediation Shell script: (show)
# Function to install or uninstall packages on RHEL and Fedora systems.
#
# Example Call(s):
#
# package_command install aide
# package_command remove telnet-server
#
function package_command {
# Load function arguments into local variables
local package_operation=$1
local package=$2
# Check sanity of the input
if [ $# -ne "2" ]
then
echo "Usage: package_command 'install/uninstall' 'rpm_package_name"
echo "Aborting."
exit 1
fi
# If dnf is installed, use dnf; otherwise, use yum
if [ -f "/usr/bin/dnf" ] ; then
install_util="/usr/bin/dnf"
else
install_util="/usr/bin/yum"
fi
if [ "$package_operation" != 'remove' ] ; then
# If the rpm is not installed, install the rpm
if ! /bin/rpm -q --quiet $package; then
$install_util -y $package_operation $package
fi
else
# If the rpm is installed, uninstall the rpm
if /bin/rpm -q --quiet $package; then
$install_util -y $package_operation $package
fi
fi
}
package_command install aide
if ! grep -q "/usr/sbin/aide --check" /etc/crontab ; then
echo "05 4 * * * root /usr/sbin/aide --check" >> /etc/crontab
fi
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Strategy: | restrict |
---|
- name: "Ensure AIDE is installed"
package:
name="{{item}}"
state=present
with_items:
- aide
tags:
- aide_periodic_cron_checking
- medium_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-26952-2
- NIST-800-53-CM-3(d)
- NIST-800-53-CM-3(e)
- NIST-800-53-CM-3(5)
- NIST-800-53-CM-6(d)
- NIST-800-53-CM-6(3)
- NIST-800-53-SC-28
- NIST-800-53-SI-7
- PCI-DSS-Req-11.5
- CJIS-5.10.1.3
- DISA-STIG-OL-07-020030
- name: "Configure Periodic Execution of AIDE"
cron:
name: "run AIDE check"
minute: 05
hour: 04
weekday: 0
user: root
job: "/usr/sbin/aide --check"
tags:
- aide_periodic_cron_checking
- medium_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-26952-2
- NIST-800-53-CM-3(d)
- NIST-800-53-CM-3(e)
- NIST-800-53-CM-3(5)
- NIST-800-53-CM-6(d)
- NIST-800-53-CM-6(3)
- NIST-800-53-SC-28
- NIST-800-53-SI-7
- PCI-DSS-Req-11.5
- CJIS-5.10.1.3
- DISA-STIG-OL-07-020030
|
Verify Integrity with RPM
[ref]groupThe RPM package management system includes the ability
to verify the integrity of installed packages by comparing the
installed files with information about the files taken from the
package metadata stored in the RPM database. Although an attacker
could corrupt the RPM database (analogous to attacking the AIDE
database as described above), this check can still reveal
modification of important files. To list which files on the system differ from what is expected by the RPM database:
$ rpm -qVa
See the man page for rpm to see a complete explanation of each column.
|
contains 2 rules |
Verify and Correct File Permissions with RPM
[ref]rule
The RPM package management system can check file access permissions
of installed software packages, including many that are important
to system security.
Verify that the file permissions of system files
and commands match vendor values. Check the file permissions
with the following command:
$ sudo rpm -Va | grep '^.M'
Output indicates files that do not match vendor defaults.
After locating a file with incorrect permissions,
run the following command to determine which package owns it:
$ rpm -qf FILENAME
Next, run the following command to reset its permissions to
the correct values:
$ sudo rpm --setperms PACKAGENAME
Warning:
Note: Due to a bug in the gdm package, the
RPM verify command may continue to fail even after file permissions have been
correctly set on /var/log/gdm .
Rationale:
Permissions on system binaries and configuration files that are too generous
could allow an unauthorized user to gain privileges that they should not have.
The permissions set by the vendor should be maintained. Any deviations from
this baseline should be investigated.
Identifiers:
CCE-27209-6 References:
OL-07-010010, AC-6, AU-9(1), AU-9(3), CM-6(d), CM-6(3), CCI-001494, CCI-001496, Req-11.5, 1.2.6, 6.1.3, 6.1.4, 6.1.5, 6.1.6, 6.1.7, 6.1.8, 6.1.9, 6.2.3, SRG-OS-000257-GPOS-00098, SRG-OS-000278-GPOS-00108, 5.10.4.1, 3.3.8, 3.4.1 Remediation Shell script: (show)
Complexity: | high |
---|
Disruption: | medium |
---|
Strategy: | restrict |
---|
# Declare array to hold list of RPM packages we need to correct permissions for
declare -a SETPERMS_RPM_LIST
# Create a list of files on the system having permissions different from what
# is expected by the RPM database
FILES_WITH_INCORRECT_PERMS=($(rpm -Va --nofiledigest | grep '^.M' | cut -d ' ' -f5-))
# For each file path from that list:
# * Determine the RPM package the file path is shipped by,
# * Include it into SETPERMS_RPM_LIST array
for FILE_PATH in "${FILES_WITH_INCORRECT_PERMS[@]}"
do
RPM_PACKAGE=$(rpm -qf "$FILE_PATH")
SETPERMS_RPM_LIST=("${SETPERMS_RPM_LIST[@]}" "$RPM_PACKAGE")
done
# Remove duplicate mention of same RPM in $SETPERMS_RPM_LIST (if any)
SETPERMS_RPM_LIST=( $(echo "${SETPERMS_RPM_LIST[@]}" | sort -n | uniq) )
# For each of the RPM packages left in the list -- reset its permissions to the
# correct values
for RPM_PACKAGE in "${SETPERMS_RPM_LIST[@]}"
do
rpm --setperms "${RPM_PACKAGE}"
done
Remediation Ansible snippet: (show)
Complexity: | high |
---|
Disruption: | medium |
---|
Strategy: | restrict |
---|
- name: "Read list of files with incorrect permissions"
shell: "rpm -Va | grep '^.M' | cut -d ' ' -f5- | sed -r 's;^.*\\s+(.+);\\1;g'"
register: files_with_incorrect_permissions
failed_when: False
changed_when: False
check_mode: no
tags:
- rpm_verify_permissions
- high_severity
- restrict_strategy
- high_complexity
- medium_disruption
- CCE-27209-6
- NIST-800-53-AC-6
- NIST-800-53-AU-9(1)
- NIST-800-53-AU-9(3)
- NIST-800-53-CM-6(d)
- NIST-800-53-CM-6(3)
- NIST-800-171-3.3.8
- NIST-800-171-3.4.1
- PCI-DSS-Req-11.5
- CJIS-5.10.4.1
- DISA-STIG-OL-07-010010
- name: "Correct file permissions with RPM"
shell: "rpm --setperms $(rpm -qf '{{item}}')"
with_items: "{{ files_with_incorrect_permissions.stdout_lines }}"
when: files_with_incorrect_permissions.stdout_lines | length > 0
tags:
- rpm_verify_permissions
- high_severity
- restrict_strategy
- high_complexity
- medium_disruption
- CCE-27209-6
- NIST-800-53-AC-6
- NIST-800-53-AU-9(1)
- NIST-800-53-AU-9(3)
- NIST-800-53-CM-6(d)
- NIST-800-53-CM-6(3)
- NIST-800-171-3.3.8
- NIST-800-171-3.4.1
- PCI-DSS-Req-11.5
- CJIS-5.10.4.1
- DISA-STIG-OL-07-010010
|
Verify File Hashes with RPM
[ref]ruleWithout cryptographic integrity protections, system
executables and files can be altered by unauthorized users without
detection.
The RPM package management system can check the hashes of
installed software packages, including many that are important to system
security.
To verify that the cryptographic hash of system files and commands match vendor
values, run the following command to list which files on the system
have hashes that differ from what is expected by the RPM database:
$ rpm -Va | grep '^..5'
A "c" in the second column indicates that a file is a configuration file, which
may appropriately be expected to change. If the file was not expected to
change, investigate the cause of the change using audit logs or other means.
The package can then be reinstalled to restore the file.
Run the following command to determine which package owns the file:
$ rpm -qf FILENAME
The package can be reinstalled from a yum repository using the command:
$ sudo yum reinstall PACKAGENAME
Alternatively, the package can be reinstalled from trusted media using the command:
$ sudo rpm -Uvh PACKAGENAME
Rationale:
The hashes of important files like system executables should match the
information given by the RPM database. Executables with erroneous hashes could
be a sign of nefarious activity on the system. Identifiers:
CCE-27157-7 References:
OL-07-010020, CM-6(d), CM-6(3), SI-7(1), CCI-000663, Req-11.5, 1.2.6, SRG-OS-000480-GPOS-00227, 5.10.4.1, 3.3.8, 3.4.1 Remediation Ansible snippet: (show)
Complexity: | high |
---|
Disruption: | medium |
---|
- name: "Set fact: Package manager reinstall command (dnf)"
set_fact:
package_manager_reinstall_cmd: dnf reinstall -y
when: ansible_distribution == "Fedora"
tags:
- rpm_verify_hashes
- high_severity
- unknown_strategy
- high_complexity
- medium_disruption
- CCE-27157-7
- NIST-800-53-CM-6(d)
- NIST-800-53-CM-6(3)
- NIST-800-53-SI-7(1)
- NIST-800-171-3.3.8
- NIST-800-171-3.4.1
- PCI-DSS-Req-11.5
- CJIS-5.10.4.1
- DISA-STIG-OL-07-010020
- name: "Set fact: Package manager reinstall command (yum)"
set_fact:
package_manager_reinstall_cmd: yum reinstall -y
when: ansible_distribution == "RedHat"
tags:
- rpm_verify_hashes
- high_severity
- unknown_strategy
- high_complexity
- medium_disruption
- CCE-27157-7
- NIST-800-53-CM-6(d)
- NIST-800-53-CM-6(3)
- NIST-800-53-SI-7(1)
- NIST-800-171-3.3.8
- NIST-800-171-3.4.1
- PCI-DSS-Req-11.5
- CJIS-5.10.4.1
- DISA-STIG-OL-07-010020
- name: "Read files with incorrect hash"
shell: "rpm -Va | grep -E '^..5.* /(bin|sbin|lib|lib64|usr)/' | sed -r 's;^.*\\s+(.+);\\1;g'"
register: files_with_incorrect_hash
changed_when: False
when: package_manager_reinstall_cmd is defined
check_mode: no
tags:
- rpm_verify_hashes
- high_severity
- unknown_strategy
- high_complexity
- medium_disruption
- CCE-27157-7
- NIST-800-53-CM-6(d)
- NIST-800-53-CM-6(3)
- NIST-800-53-SI-7(1)
- NIST-800-171-3.3.8
- NIST-800-171-3.4.1
- PCI-DSS-Req-11.5
- CJIS-5.10.4.1
- DISA-STIG-OL-07-010020
- name: "Reinstall packages of files with incorrect hash"
shell: "{{package_manager_reinstall_cmd}} $(rpm -qf '{{item}}')"
with_items: "{{ files_with_incorrect_hash.stdout_lines }}"
when: package_manager_reinstall_cmd is defined and (files_with_incorrect_hash.stdout_lines | length > 0)
tags:
- rpm_verify_hashes
- high_severity
- unknown_strategy
- high_complexity
- medium_disruption
- CCE-27157-7
- NIST-800-53-CM-6(d)
- NIST-800-53-CM-6(3)
- NIST-800-53-SI-7(1)
- NIST-800-171-3.3.8
- NIST-800-171-3.4.1
- PCI-DSS-Req-11.5
- CJIS-5.10.4.1
- DISA-STIG-OL-07-010020
|
Endpoint Protection Software
[ref]group
Endpoint protection security software that is not provided or supported
by Oracle Corporation can be installed to provide complementary or duplicative
security capabilities to those provided by the base platform. Add-on
software may not be appropriate for some specialized systems.
|
contains 1 rule |
Install Intrusion Detection Software
[ref]rule
The base Oracle platform already includes a sophisticated auditing system that
can detect intruder activity, as well as SELinux, which provides host-based
intrusion prevention capabilities by confining privileged programs and user
sessions which may become compromised.
Warning:
Note in DoD environments, supplemental intrusion
detection tools, such as the McAfee Host-based Security System, are available
to integrate with existing infrastructure. When these supplemental tools
interfere with proper functioning of SELinux, SELinux takes precedence. Rationale:
Host-based intrusion detection tools provide a system-level defense when an
intruder gains access to a system or network.
|
Disable Prelinking
[ref]rule
The prelinking feature changes binaries in an attempt to decrease their startup
time. In order to disable it, change or add the following line inside the file
/etc/sysconfig/prelink :
PRELINKING=no
Next, run the following command to return binaries to a normal, non-prelinked state:
$ sudo /usr/sbin/prelink -ua
Rationale:
Because the prelinking feature changes binaries, it can interfere with the
operation of certain software and/or modes such as AIDE, FIPS, etc.
Remediation Shell script: (show)
#
# Disable prelinking altogether
#
if grep -q ^PRELINKING /etc/sysconfig/prelink
then
sed -i 's/PRELINKING.*/PRELINKING=no/g' /etc/sysconfig/prelink
else
echo -e "\n# Set PRELINKING=no per security requirements" >> /etc/sysconfig/prelink
echo "PRELINKING=no" >> /etc/sysconfig/prelink
fi
#
# Undo previous prelink changes to binaries
#
/usr/sbin/prelink -ua
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Strategy: | restrict |
---|
- name: disable prelinking
lineinfile:
path: /etc/sysconfig/prelink
regexp: '^PRELINKING='
line: 'PRELINKING=no'
tags:
- disable_prelink
- low_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27078-5
- NIST-800-53-CM-6(d)
- NIST-800-53-CM-6(3)
- NIST-800-53-SC-28
- NIST-800-53-SI-7
- NIST-800-171-3.13.11
- PCI-DSS-Req-11.5
- CJIS-5.10.1.3
|
GNOME Desktop Environment
[ref]group
GNOME is a graphical desktop environment bundled with many Linux distributions that
allow users to easily interact with the operating system graphically rather than
textually. The GNOME Graphical Display Manager (GDM) provides login, logout, and user
switching contexts as well as display server management.
GNOME is developed by the GNOME Project and is considered the default
Oracle Graphical environment.
For more information on GNOME and the GNOME Project, see https://www.gnome.org
|
contains 4 rules |
Configure GNOME Screen Locking
[ref]groupIn the default GNOME3 desktop, the screen can be locked
by selecting the user name in the far right corner of the main panel and
selecting Lock.
The following sections detail commands to enforce idle activation of the screensaver,
screen locking, a blank-screen screensaver, and an idle activation time.
Because users should be trained to lock the screen when they
step away from the computer, the automatic locking feature is only
meant as a backup.
The root account can be screen-locked; however, the root account should
never be used to log into an X Windows environment and should only
be used to for direct login via console in emergency circumstances.
For more information about enforcing preferences in the GNOME3 environment using the DConf
configuration system, see http://wiki.gnome.org/dconf and
the man page dconf(1) .
|
contains 4 rules |
Set GNOME3 Screensaver Inactivity Timeout
[ref]rule
The idle time-out value for inactivity in the GNOME3 desktop is configured via the idle-delay
setting must be set under an appropriate configuration file(s) in the /etc/dconf/db/local.d directory
and locked in /etc/dconf/db/local.d/locks directory to prevent user modification.
For example, to configure the system for a 15 minute delay, add the following to
/etc/dconf/db/local.d/00-security-settings :
[org/gnome/desktop/session]
idle-delay='uint32 900'
Once the setting has been added, add a lock to
/etc/dconf/db/local.d/locks/00-security-settings-lock to prevent user modification.
For example:
/org/gnome/desktop/session/idle-delay
After the settings have been set, run dconf update .
Rationale:
A session time-out lock is a temporary action taken when a user stops work and moves away from
the immediate physical vicinity of the information system but does not logout because of the
temporary nature of the absence. Rather than relying on the user to manually lock their operating
system session prior to vacating the vicinity, GNOME3 can be configured to identify when
a user's session has idled and take action to initiate a session lock.
Remediation Shell script: (show)
inactivity_timeout_value="900"
# Define constants to be reused below
ORG_GNOME_DESKTOP_SESSION="org/gnome/desktop/session"
SSG_DCONF_IDLE_DELAY_FILE="/etc/dconf/db/local.d/10-scap-security-guide"
SESSION_LOCKS_FILE="/etc/dconf/db/local.d/locks/session"
IDLE_DELAY_DEFINED="FALSE"
# First update '[org/gnome/desktop/session] idle-delay' settings in
# /etc/dconf/db/local.d/* if already defined
for FILE in /etc/dconf/db/local.d/*
do
if grep -q -d skip "$ORG_GNOME_DESKTOP_SESSION" "$FILE"
then
if grep 'idle-delay' "$FILE"
then
sed -i "s/idle-delay=.*/idle-delay=uint32 ${inactivity_timeout_value}/g" "$FILE"
IDLE_DELAY_DEFINED="TRUE"
fi
fi
done
# Then define '[org/gnome/desktop/session] idle-delay' setting
# if still not defined yet
if [ "$IDLE_DELAY_DEFINED" != "TRUE" ]
then
echo "" >> $SSG_DCONF_IDLE_DELAY_FILE
echo "[org/gnome/desktop/session]" >> $SSG_DCONF_IDLE_DELAY_FILE
echo "idle-delay=uint32 ${inactivity_timeout_value}" >> $SSG_DCONF_IDLE_DELAY_FILE
fi
# Verify if 'idle-delay' modification is locked. If not, lock it
if ! grep -q "^/${ORG_GNOME_DESKTOP_SESSION}/idle-delay$" /etc/dconf/db/local.d/locks/*
then
# Check if "$SESSION_LOCK_FILE" exists. If not, create it.
if [ ! -f "$SESSION_LOCKS_FILE" ]
then
touch "$SESSION_LOCKS_FILE"
fi
echo "/${ORG_GNOME_DESKTOP_SESSION}/idle-delay" >> "$SESSION_LOCKS_FILE"
fi
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | medium |
---|
- name: XCCDF Value inactivity_timeout_value # promote to variable
set_fact:
inactivity_timeout_value: 900
tags:
- always
- name: "Set GNOME3 Screensaver Inactivity Timeout"
ini_file:
dest: "/etc/dconf/db/local/d/00-security-settings"
section: "org/gnome/desktop/screensaver"
option: idle-delay
value: "{{ inactivity_timeout_value }}"
create: yes
tags:
- dconf_gnome_screensaver_idle_delay
- medium_severity
- unknown_strategy
- low_complexity
- medium_disruption
- CCE-80110-0
- NIST-800-53-AC-11(a)
- NIST-800-171-3.1.10
- PCI-DSS-Req-8.1.8
- CJIS-5.5.5
- DISA-STIG-OL-07-010070
- name: "Prevent user modification of GNOME idle-delay"
lineinfile:
path: /etc/dconf/db/local.d/locks/00-security-settings-lock
regexp: '^/org/gnome/desktop/screensaver/idle-delay'
line: '/org/gnome/desktop/screensaver/idle-delay'
tags:
- dconf_gnome_screensaver_idle_delay
- medium_severity
- unknown_strategy
- low_complexity
- medium_disruption
- CCE-80110-0
- NIST-800-53-AC-11(a)
- NIST-800-171-3.1.10
- PCI-DSS-Req-8.1.8
- CJIS-5.5.5
- DISA-STIG-OL-07-010070
|
Enable GNOME3 Screensaver Idle Activation
[ref]rule
To activate the screensaver in the GNOME3 desktop after a period of inactivity,
add or set idle-activation-enabled to true in
/etc/dconf/db/local.d/00-security-settings . For example:
[org/gnome/desktop/screensaver]
idle_activation_enabled=true
Once the setting has been added, add a lock to
/etc/dconf/db/local.d/locks/00-security-settings-lock to prevent user modification.
For example:
/org/gnome/desktop/screensaver/idle-activation-enabled
After the settings have been set, run dconf update .
Rationale:
A session time-out lock is a temporary action taken when a user stops work and moves away from the immediate
physical vicinity of the information system but does not logout because of the temporary nature of the absence.
Rather than relying on the user to manually lock their operating system session prior to vacating the vicinity,
GNOME desktops can be configured to identify when a user's session has idled and take action to initiate the
session lock.
Enabling idle activation of the screensaver ensures the screensaver will
be activated after the idle delay. Applications requiring continuous,
real-time screen display (such as network management products) require the
login session does not have administrator rights and the display station is located in a
controlled-access area.
Remediation Shell script: (show)
# Define constants to be reused below
ORG_GNOME_DESKTOP_SCREENSAVER="org/gnome/desktop/screensaver"
SSG_DCONF_IDLE_ACTIVATION_FILE="/etc/dconf/db/local.d/10-scap-security-guide"
SCREENSAVER_LOCKS_FILE="/etc/dconf/db/local.d/locks/screensaver"
IDLE_ACTIVATION_DEFINED="FALSE"
# First update '[org/gnome/desktop/screensaver] idle-activation-enabled' settings in
# /etc/dconf/db/local.d/* if already defined
for FILE in /etc/dconf/db/local.d/*
do
if grep -q -d skip "$ORG_GNOME_DESKTOP_SCREENSAVER" "$FILE"
then
if grep 'idle-activation-enabled' "$FILE"
then
sed -i "s/idle-activation-enabled=.*/idle-activation-enabled=true/g" "$FILE"
IDLE_ACTIVATION_DEFINED="TRUE"
fi
fi
done
# Then define '[org/gnome/desktop/screensaver] idle-activation-enabled' setting
# if still not defined yet
if [ "$IDLE_ACTIVATION_DEFINED" != "TRUE" ]
then
echo "" >> $SSG_DCONF_IDLE_ACTIVATION_FILE
echo "[org/gnome/desktop/screensaver]" >> $SSG_DCONF_IDLE_ACTIVATION_FILE
echo "idle-activation-enabled=true" >> $SSG_DCONF_IDLE_ACTIVATION_FILE
fi
# Verify if 'idle-activation-enabled' modification is locked. If not, lock it
if ! grep -q "^/${ORG_GNOME_DESKTOP_SCREENSAVER}/idle-activation-enabled$" /etc/dconf/db/local.d/locks/*
then
# Check if "$SCREENSAVER_LOCK_FILE" exists. If not, create it.
if [ ! -f "$SCREENSAVER_LOCKS_FILE" ]
then
touch "$SCREENSAVER_LOCKS_FILE"
fi
echo "/${ORG_GNOME_DESKTOP_SCREENSAVER}/idle-activation-enabled" >> "$SCREENSAVER_LOCKS_FILE"
fi
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | medium |
---|
- name: "Enable GNOME3 Screensaver Idle Activation"
ini_file:
dest: "/etc/dconf/db/local/d/00-security-settings"
section: "org/gnome/desktop/screensaver"
option: idle_activation_enabled
value: true
create: yes
tags:
- dconf_gnome_screensaver_idle_activation_enabled
- medium_severity
- unknown_strategy
- low_complexity
- medium_disruption
- CCE-80111-8
- NIST-800-53-AC-11(a)
- NIST-800-171-3.1.10
- PCI-DSS-Req-8.1.8
- CJIS-5.5.5
- DISA-STIG-OL-07-010100
- name: "Prevent user modification of GNOME idle_activation_enabled"
lineinfile:
path: /etc/dconf/db/local.d/locks/00-security-settings-lock
regexp: '^/org/gnome/desktop/screensaver/idle-activation-enabled'
line: '/org/gnome/desktop/screensaver/idle-activation-enabled'
tags:
- dconf_gnome_screensaver_idle_activation_enabled
- medium_severity
- unknown_strategy
- low_complexity
- medium_disruption
- CCE-80111-8
- NIST-800-53-AC-11(a)
- NIST-800-171-3.1.10
- PCI-DSS-Req-8.1.8
- CJIS-5.5.5
- DISA-STIG-OL-07-010100
|
Enable GNOME3 Screensaver Lock After Idle Period
[ref]rule
To activate locking of the screensaver in the GNOME3 desktop when it is activated,
add or set lock-enabled to true in
/etc/dconf/db/local.d/00-security-settings . For example:
[org/gnome/desktop/screensaver]
lock-enabled=true
Once the settings have been added, add a lock to
/etc/dconf/db/local.d/locks/00-security-settings-lock to prevent user modification.
For example:
/org/gnome/desktop/screensaver/lock-enabled
After the settings have been set, run dconf update .
Rationale:
A session lock is a temporary action taken when a user stops work and moves away from the immediate physical vicinity
of the information system but does not want to logout because of the temporary nature of the absense.
Remediation Shell script: (show)
var_screensaver_lock_delay="0"
# Define constants to be reused below
ORG_GNOME_DESKTOP_SCREENSAVER="org/gnome/desktop/screensaver"
SSG_DCONF_LOCK_ENABLED_FILE="/etc/dconf/db/local.d/10-scap-security-guide"
SCREENSAVER_LOCKS_FILE="/etc/dconf/db/local.d/locks/screensaver"
LOCK_ENABLED_DEFINED="FALSE"
LOCK_DELAY_DEFINED="FALSE"
# First update '[org/gnome/desktop/screensaver] lock-enabled' and
# '[org/gnome/desktop/screensaver] lock-delay' settings in
# /etc/dconf/db/local.d/* if already defined
for FILE in /etc/dconf/db/local.d/*
do
if grep -q -d skip "$ORG_GNOME_DESKTOP_SCREENSAVER" "$FILE"
then
if grep 'lock-enabled' "$FILE"
then
sed -i "s/lock-enabled=.*/lock-enabled=true/g" "$FILE"
LOCK_ENABLED_DEFINED="TRUE"
fi
if grep 'lock-delay' "$FILE"
then
sed -i "s/lock-delay=.*/lock-delay=uint32 0/g" "$FILE"
LOCK_DELAY_DEFINED="TRUE"
fi
fi
done
# Then define '[org/gnome/desktop/screensaver] lock-enabled' setting
# if still not defined yet
if [ "$LOCK_ENABLED_DEFINED" != "TRUE" ] || [ "$LOCK_DELAY_DEFINED" != "TRUE" ]
then
echo "" >> $SSG_DCONF_LOCK_ENABLED_FILE
echo "[org/gnome/desktop/screensaver]" >> $SSG_DCONF_LOCK_ENABLED_FILE
echo "lock-enabled=true" >> $SSG_DCONF_LOCK_ENABLED_FILE
echo "lock-delay=uint32 ${var_screensaver_lock_delay} " >> $SSG_DCONF_LOCK_ENABLED_FILE
fi
# Verify if 'lock-enabled' modification is locked. If not, lock it
if ! grep -q "^/${ORG_GNOME_DESKTOP_SCREENSAVER}/lock-enabled$" /etc/dconf/db/local.d/locks/*
then
# Check if "$SCREENSAVER_LOCK_FILE" exists. If not, create it.
if [ ! -f "$SCREENSAVER_LOCKS_FILE" ]
then
touch "$SCREENSAVER_LOCKS_FILE"
fi
echo "/${ORG_GNOME_DESKTOP_SCREENSAVER}/lock-enabled" >> "$SCREENSAVER_LOCKS_FILE"
fi
# Verify if 'lock-delay' modification is locked. If not, lock it
if ! grep -q "^/${ORG_GNOME_DESKTOP_SCREENSAVER}/lock-delay$" /etc/dconf/db/local.d/locks/*
then
# Check if "$SCREENSAVER_LOCK_FILE" exists. If not, create it.
if [ ! -f "$SCREENSAVER_LOCKS_FILE" ]
then
touch "$SCREENSAVER_LOCKS_FILE"
fi
echo "/${ORG_GNOME_DESKTOP_SCREENSAVER}/lock-delay" >> "$SCREENSAVER_LOCKS_FILE"
fi
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | medium |
---|
- name: "Enable GNOME3 Screensaver Lock After Idle Period"
ini_file:
dest: "/etc/dconf/db/local/d/00-security-settings"
section: "org/gnome/desktop/screensaver"
option: lock-enabled
value: true
create: yes
tags:
- dconf_gnome_screensaver_lock_enabled
- medium_severity
- unknown_strategy
- low_complexity
- medium_disruption
- CCE-80112-6
- NIST-800-53-AC-11(b)
- NIST-800-171-3.1.10
- PCI-DSS-Req-8.1.8
- CJIS-5.5.5
- DISA-STIG-OL-07-010060
- name: "Prevent user modification of GNOME lock-enabled"
lineinfile:
path: /etc/dconf/db/local.d/locks/00-security-settings-lock
regexp: '^/org/gnome/desktop/screensaver/lock-enabled'
line: '/org/gnome/desktop/screensaver/lock-enabled'
tags:
- dconf_gnome_screensaver_lock_enabled
- medium_severity
- unknown_strategy
- low_complexity
- medium_disruption
- CCE-80112-6
- NIST-800-53-AC-11(b)
- NIST-800-171-3.1.10
- PCI-DSS-Req-8.1.8
- CJIS-5.5.5
- DISA-STIG-OL-07-010060
|
Implement Blank Screensaver
[ref]rule
To set the screensaver mode in the GNOME3 desktop to a blank screen,
add or set picture-uri to string '' in
/etc/dconf/db/local.d/00-security-settings . For example:
[org/gnome/desktop/screensaver]
picture-uri=string ''
Once the settings have been added, add a lock to
/etc/dconf/db/local.d/locks/00-security-settings-lock to prevent user modification.
For example:
/org/gnome/desktop/screensaver/picture-uri
After the settings have been set, run dconf update .
Rationale:
Setting the screensaver mode to blank-only conceals the
contents of the display from passersby.
Remediation Shell script: (show)
# Define constants to be reused below
ORG_GNOME_DESKTOP_SCREENSAVER="org/gnome/desktop/screensaver"
SSG_DCONF_MODE_BLANK_FILE="/etc/dconf/db/local.d/10-scap-security-guide"
SCREENSAVER_LOCKS_FILE="/etc/dconf/db/local.d/locks/screensaver"
MODE_BLANK_DEFINED="FALSE"
# First update '[org/gnome/desktop/screensaver] picture-uri' settings in
# /etc/dconf/db/local.d/* if already defined
for FILE in /etc/dconf/db/local.d/*
do
if grep -q -d skip "$ORG_GNOME_DESKTOP_SCREENSAVER" "$FILE"
then
if grep 'picture-uri' "$FILE"
then
sed -i "s/picture-uri=.*/picture-uri=string ''/g" "$FILE"
MODE_BLANK_DEFINED="TRUE"
fi
fi
done
# Then define '[org/gnome/desktop/screensaver] picture-uri' setting
# if still not defined yet
if [ "$MODE_BLANK_DEFINED" != "TRUE" ]
then
echo "" >> $SSG_DCONF_MODE_BLANK_FILE
echo "[org/gnome/desktop/screensaver]" >> $SSG_DCONF_MODE_BLANK_FILE
echo "picture-uri=string ''" >> $SSG_DCONF_MODE_BLANK_FILE
fi
# Verify if 'picture-uri' modification is locked. If not, lock it
if ! grep -q "^/${ORG_GNOME_DESKTOP_SCREENSAVER}/picture-uri$" /etc/dconf/db/local.d/locks/*
then
# Check if "$SCREENSAVER_LOCK_FILE" exists. If not, create it.
if [ ! -f "$SCREENSAVER_LOCKS_FILE" ]
then
touch "$SCREENSAVER_LOCKS_FILE"
fi
echo "/${ORG_GNOME_DESKTOP_SCREENSAVER}/picture-uri" >> "$SCREENSAVER_LOCKS_FILE"
fi
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | medium |
---|
- name: "Implement Blank Screensaver"
ini_file:
dest: "/etc/dconf/db/local/d/00-security-settings"
section: "org/gnome/desktop/screensaver"
option: picture-uri
value: string ''
create: yes
tags:
- dconf_gnome_screensaver_mode_blank
- low_severity
- unknown_strategy
- low_complexity
- medium_disruption
- CCE-80113-4
- NIST-800-53-AC-11(b)
- NIST-800-171-3.1.10
- PCI-DSS-Req-8.1.8
- CJIS-5.5.5
- name: "Prevent user modification of GNOME picture-uri"
lineinfile:
path: /etc/dconf/db/local.d/locks/00-security-settings-lock
regexp: '^/org/gnome/desktop/screensaver/picture-uri'
line: '/org/gnome/desktop/screensaver/picture-uri'
tags:
- dconf_gnome_screensaver_mode_blank
- low_severity
- unknown_strategy
- low_complexity
- medium_disruption
- CCE-80113-4
- NIST-800-53-AC-11(b)
- NIST-800-171-3.1.10
- PCI-DSS-Req-8.1.8
- CJIS-5.5.5
|
File Permissions and Masks
[ref]groupTraditional Unix security relies heavily on file and
directory permissions to prevent unauthorized users from reading or
modifying files to which they should not have access.
Several of the commands in this section search filesystems
for files or directories with certain characteristics, and are
intended to be run on every local partition on a given system.
When the variable PART appears in one of the commands below,
it means that the command is intended to be run repeatedly, with the
name of each local partition substituted for PART in turn.
The following command prints a list of all xfs partitions on the local
system, which is the default filesystem for Oracle Linux
7 installations:
$ mount -t xfs | awk '{print $3}'
For any systems that use a different
local filesystem type, modify this command as appropriate.
|
contains 9 rules |
Verify Permissions on Important Files and
Directories
[ref]groupPermissions for many files on a system must be set
restrictively to ensure sensitive information is properly protected.
This section discusses important
permission restrictions which can be verified
to ensure that no harmful discrepancies have
arisen. |
contains 9 rules |
Verify Permissions on Files with Local Account Information and Credentials
[ref]groupThe default restrictive permissions for files which act as
important security databases such as passwd , shadow ,
group , and gshadow files must be maintained. Many utilities
need read access to the passwd file in order to function properly, but
read access to the shadow file allows malicious attacks against system
passwords, and should never be enabled. |
contains 9 rules |
Verify User Who Owns shadow File
[ref]rule
To properly set the owner of /etc/shadow , run the command:
$ sudo chown root /etc/shadow
Rationale:The /etc/shadow file contains the list of local
system accounts and stores password hashes. Protection of this file is
critical for system security. Failure to give ownership of this file
to root provides the designated owner with access to sensitive information
which could weaken the system security posture. Remediation Shell script: (show)
|
Verify Group Who Owns shadow File
[ref]rule
To properly set the group owner of /etc/shadow , run the command:
$ sudo chgrp root /etc/shadow
Rationale:The /etc/shadow file stores password hashes. Protection of this file is
critical for system security. Remediation Shell script: (show)
|
Verify Permissions on shadow File
[ref]rule
To properly set the permissions of /etc/shadow , run the command:
$ sudo chmod 0000 /etc/shadow
Rationale:The /etc/shadow file contains the list of local
system accounts and stores password hashes. Protection of this file is
critical for system security. Failure to give ownership of this file
to root provides the designated owner with access to sensitive information
which could weaken the system security posture. Remediation Shell script: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Strategy: | configure |
---|
chmod 0000 /etc/shadow
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Strategy: | configure |
---|
- name: Ensure permission 0000 on /etc/shadow
file:
path="{{item}}"
mode=0000
with_items:
- /etc/shadow
tags:
- file_permissions_etc_shadow
- medium_severity
- configure_strategy
- low_complexity
- low_disruption
- CCE-27100-7
- NIST-800-53-AC-6
- PCI-DSS-Req-8.7.c
- CJIS-5.5.2.2
|
Verify User Who Owns group File
[ref]rule
To properly set the owner of /etc/group , run the command:
$ sudo chown root /etc/group
Rationale:The /etc/group file contains information regarding groups that are configured
on the system. Protection of this file is important for system security. Remediation Shell script: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Strategy: | configure |
---|
chown root /etc/group
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Strategy: | configure |
---|
- name: Find /etc/group file(s)
find:
paths: "{{ '/etc/group' | dirname }}"
patterns: "{{ '/etc/group' | basename }}"
register: files_found
tags:
- file_owner_etc_group
- medium_severity
- configure_strategy
- low_complexity
- low_disruption
- CCE-26933-2
- NIST-800-53-AC-6
- PCI-DSS-Req-8.7.c
- CJIS-5.5.2.2
- name: Set user ownership to root
file:
path: "{{ item.path }}"
owner: root
with_items:
- "{{ files_found.files }}"
tags:
- file_owner_etc_group
- medium_severity
- configure_strategy
- low_complexity
- low_disruption
- CCE-26933-2
- NIST-800-53-AC-6
- PCI-DSS-Req-8.7.c
- CJIS-5.5.2.2
|
Verify Group Who Owns group File
[ref]rule
To properly set the group owner of /etc/group , run the command:
$ sudo chgrp root /etc/group
Rationale:The /etc/group file contains information regarding groups that are configured
on the system. Protection of this file is important for system security. Remediation Shell script: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Strategy: | configure |
---|
chgrp root /etc/group
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Strategy: | configure |
---|
- name: Find /etc/group file(s)
find:
paths: "{{ '/etc/group' | dirname }}"
patterns: "{{ '/etc/group' | basename }}"
register: files_found
tags:
- file_groupowner_etc_group
- medium_severity
- configure_strategy
- low_complexity
- low_disruption
- CCE-27037-1
- NIST-800-53-AC-6
- PCI-DSS-Req-8.7.c
- CJIS-5.5.2.2
- name: Set group ownership to root
file:
path: "{{ item.path }}"
group: root
with_items:
- "{{ files_found.files }}"
tags:
- file_groupowner_etc_group
- medium_severity
- configure_strategy
- low_complexity
- low_disruption
- CCE-27037-1
- NIST-800-53-AC-6
- PCI-DSS-Req-8.7.c
- CJIS-5.5.2.2
|
Verify Permissions on group File
[ref]rule
To properly set the permissions of /etc/group , run the command:
$ sudo chmod 644 /etc/group
Rationale:The /etc/group file contains information regarding groups that are configured
on the system. Protection of this file is important for system security. Remediation Shell script: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Strategy: | configure |
---|
chmod 0644 /etc/group
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Strategy: | configure |
---|
- name: Find /etc/group file(s)
find:
paths: "{{ '/etc/group' | dirname }}"
patterns: "{{ '/etc/group' | basename }}"
register: files_found
tags:
- file_permissions_etc_group
- medium_severity
- configure_strategy
- low_complexity
- low_disruption
- CCE-26949-8
- NIST-800-53-AC-6
- PCI-DSS-Req-8.7.c
- CJIS-5.5.2.2
- name: Set permissions
file:
path: "{{ item.path }}"
mode: 0644
with_items:
- "{{ files_found.files }}"
tags:
- file_permissions_etc_group
- medium_severity
- configure_strategy
- low_complexity
- low_disruption
- CCE-26949-8
- NIST-800-53-AC-6
- PCI-DSS-Req-8.7.c
- CJIS-5.5.2.2
|
Verify User Who Owns passwd File
[ref]rule
To properly set the owner of /etc/passwd , run the command:
$ sudo chown root /etc/passwd
Rationale:The /etc/passwd file contains information about the users that are configured on
the system. Protection of this file is critical for system security. Remediation Shell script: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Strategy: | configure |
---|
chown root /etc/passwd
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Strategy: | configure |
---|
- name: Find /etc/passwd file(s)
find:
paths: "{{ '/etc/passwd' | dirname }}"
patterns: "{{ '/etc/passwd' | basename }}"
register: files_found
tags:
- file_owner_etc_passwd
- medium_severity
- configure_strategy
- low_complexity
- low_disruption
- CCE-27138-7
- NIST-800-53-AC-6
- PCI-DSS-Req-8.7.c
- CJIS-5.5.2.2
- name: Set user ownership to root
file:
path: "{{ item.path }}"
owner: root
with_items:
- "{{ files_found.files }}"
tags:
- file_owner_etc_passwd
- medium_severity
- configure_strategy
- low_complexity
- low_disruption
- CCE-27138-7
- NIST-800-53-AC-6
- PCI-DSS-Req-8.7.c
- CJIS-5.5.2.2
|
Verify Group Who Owns passwd File
[ref]rule
To properly set the group owner of /etc/passwd , run the command:
$ sudo chgrp root /etc/passwd
Rationale:The /etc/passwd file contains information about the users that are configured on
the system. Protection of this file is critical for system security. Remediation Shell script: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Strategy: | configure |
---|
chgrp root /etc/passwd
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Strategy: | configure |
---|
- name: Find /etc/passwd file(s)
find:
paths: "{{ '/etc/passwd' | dirname }}"
patterns: "{{ '/etc/passwd' | basename }}"
register: files_found
tags:
- file_groupowner_etc_passwd
- medium_severity
- configure_strategy
- low_complexity
- low_disruption
- CCE-26639-5
- NIST-800-53-AC-6
- PCI-DSS-Req-8.7.c
- CJIS-5.5.2.2
- name: Set group ownership to root
file:
path: "{{ item.path }}"
group: root
with_items:
- "{{ files_found.files }}"
tags:
- file_groupowner_etc_passwd
- medium_severity
- configure_strategy
- low_complexity
- low_disruption
- CCE-26639-5
- NIST-800-53-AC-6
- PCI-DSS-Req-8.7.c
- CJIS-5.5.2.2
|
Verify Permissions on passwd File
[ref]rule
To properly set the permissions of /etc/passwd , run the command:
$ sudo chmod 0644 /etc/passwd
Rationale:If the /etc/passwd file is writable by a group-owner or the
world the risk of its compromise is increased. The file contains the list of
accounts on the system and associated information, and protection of this file
is critical for system security. Remediation Shell script: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Strategy: | configure |
---|
chmod 0644 /etc/passwd
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Strategy: | configure |
---|
- name: Find /etc/passwd file(s)
find:
paths: "{{ '/etc/passwd' | dirname }}"
patterns: "{{ '/etc/passwd' | basename }}"
register: files_found
tags:
- file_permissions_etc_passwd
- medium_severity
- configure_strategy
- low_complexity
- low_disruption
- CCE-26887-0
- NIST-800-53-AC-6
- PCI-DSS-Req-8.7.c
- CJIS-5.5.2.2
- name: Set permissions
file:
path: "{{ item.path }}"
mode: 0644
with_items:
- "{{ files_found.files }}"
tags:
- file_permissions_etc_passwd
- medium_severity
- configure_strategy
- low_complexity
- low_disruption
- CCE-26887-0
- NIST-800-53-AC-6
- PCI-DSS-Req-8.7.c
- CJIS-5.5.2.2
|
Account and Access Control
[ref]groupIn traditional Unix security, if an attacker gains
shell access to a certain login account, they can perform any action
or access any file to which that account has access. Therefore,
making it more difficult for unauthorized people to gain shell
access to accounts, particularly to privileged accounts, is a
necessary part of securing a system. This section introduces
mechanisms for restricting access to accounts under
Oracle Linux 7. |
contains 20 rules |
Protect Accounts by Restricting Password-Based Login
[ref]groupConventionally, Unix shell accounts are accessed by
providing a username and password to a login program, which tests
these values for correctness using the /etc/passwd and
/etc/shadow files. Password-based login is vulnerable to
guessing of weak passwords, and to sniffing and man-in-the-middle
attacks against passwords entered over a network or at an insecure
console. Therefore, mechanisms for accessing accounts by entering
usernames and passwords should be restricted to those which are
operationally necessary. |
contains 6 rules |
Verify Proper Storage and Existence of Password
Hashes
[ref]group
By default, password hashes for local accounts are stored
in the second field (colon-separated) in
/etc/shadow . This file should be readable only by
processes running with root credentials, preventing users from
casually accessing others' password hashes and attempting
to crack them.
However, it remains possible to misconfigure the system
and store password hashes
in world-readable files such as /etc/passwd , or
to even store passwords themselves in plaintext on the system.
Using system-provided tools for password change/creation
should allow administrators to avoid such misconfiguration.
|
contains 3 rules |
Prevent Log In to Accounts With Empty Password
[ref]ruleIf an account is configured for password authentication
but does not have an assigned password, it may be possible to log
into the account without authentication. Remove any instances of the nullok
option in /etc/pam.d/system-auth to
prevent logins with empty passwords.
Rationale:
If an account has an empty password, anyone could log in and
run commands with the privileges of that account. Accounts with
empty passwords should never be used in operational environments.
Identifiers:
CCE-27286-4 References:
OL-07-010290, AC-6, IA-5(b), IA-5(c), IA-5(1)(a), CCI-000366, SRG-OS-000480-GPOS-00227, Req-8.2.3, 5.5.2, 3.1.1, 3.1.5 Remediation Shell script: (show)
sed --follow-symlinks -i 's/\<nullok\>//g' /etc/pam.d/system-auth
sed --follow-symlinks -i 's/\<nullok\>//g' /etc/pam.d/password-auth
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | medium |
---|
Strategy: | configure |
---|
- name: "Prevent Log In to Accounts With Empty Password - system-auth"
replace:
dest: /etc/pam.d/system-auth
follow: yes
regexp: 'nullok'
tags:
- no_empty_passwords
- high_severity
- configure_strategy
- low_complexity
- medium_disruption
- CCE-27286-4
- NIST-800-53-AC-6
- NIST-800-53-IA-5(b)
- NIST-800-53-IA-5(c)
- NIST-800-53-IA-5(1)(a)
- NIST-800-171-3.1.1
- NIST-800-171-3.1.5
- PCI-DSS-Req-8.2.3
- CJIS-5.5.2
- DISA-STIG-OL-07-010290
- name: "Prevent Log In to Accounts With Empty Password - password-auth"
replace:
dest: /etc/pam.d/password-auth
follow: yes
regexp: 'nullok'
tags:
- no_empty_passwords
- high_severity
- configure_strategy
- low_complexity
- medium_disruption
- CCE-27286-4
- NIST-800-53-AC-6
- NIST-800-53-IA-5(b)
- NIST-800-53-IA-5(c)
- NIST-800-53-IA-5(1)(a)
- NIST-800-171-3.1.1
- NIST-800-171-3.1.5
- PCI-DSS-Req-8.2.3
- CJIS-5.5.2
- DISA-STIG-OL-07-010290
|
Verify All Account Password Hashes are Shadowed
[ref]rule
If any password hashes are stored in /etc/passwd (in the second field,
instead of an x or * ), the cause of this misconfiguration should be
investigated. The account should have its password reset and the hash should be
properly stored, or the account should be deleted entirely.
Rationale:
The hashes for all user account passwords should be stored in
the file /etc/shadow and never in /etc/passwd ,
which is readable by all users.
|
All GIDs referenced in /etc/passwd must be defined in /etc/group
[ref]rule
Add a group to the system for each GID referenced without a corresponding group.
Rationale:
If a user is assigned the Group Identifier (GID) of a group not existing on the system, and a group
with the Gruop Identifier (GID) is subsequently created, the user may have unintended rights to
any files associated with the group.
|
Set Password Expiration Parameters
[ref]groupThe file /etc/login.defs controls several
password-related settings. Programs such as passwd ,
su , and
login consult /etc/login.defs to determine
behavior with regard to password aging, expiration warnings,
and length. See the man page login.defs(5) for more information.
Users should be forced to change their passwords, in order to
decrease the utility of compromised passwords. However, the need to
change passwords often should be balanced against the risk that
users will reuse or write down passwords if forced to change them
too often. Forcing password changes every 90-360 days, depending on
the environment, is recommended. Set the appropriate value as
PASS_MAX_DAYS and apply it to existing accounts with the
-M flag.
The PASS_MIN_DAYS (-m ) setting prevents password
changes for 7 days after the first change, to discourage password
cycling. If you use this setting, train users to contact an administrator
for an emergency password change in case a new password becomes
compromised. The PASS_WARN_AGE (-W ) setting gives
users 7 days of warnings at login time that their passwords are about to expire.
For example, for each existing human user USER, expiration parameters
could be adjusted to a 180 day maximum password age, 7 day minimum password
age, and 7 day warning period with the following command:
$ sudo chage -M 180 -m 7 -W 7 USER
|
contains 1 rule |
Set Password Maximum Age
[ref]ruleTo specify password maximum age for new accounts,
edit the file /etc/login.defs
and add or correct the following line:
PASS_MAX_DAYS 90
A value of 180 days is sufficient for many environments.
The DoD requirement is 60.
The profile requirement is 90 .
Rationale:
Any password, no matter how complex, can eventually be cracked. Therefore, passwords
need to be changed periodically. If the operating system does not limit the lifetime
of passwords and force users to change their passwords, there is the risk that the
operating system passwords could be compromised.
Setting the password maximum age ensures users are required to
periodically change their passwords. Requiring shorter password lifetimes
increases the risk of users writing down the password in a convenient
location subject to physical compromise. Remediation Shell script: (show)
var_accounts_maximum_age_login_defs="90"
grep -q ^PASS_MAX_DAYS /etc/login.defs && \
sed -i "s/PASS_MAX_DAYS.*/PASS_MAX_DAYS $var_accounts_maximum_age_login_defs/g" /etc/login.defs
if ! [ $? -eq 0 ]; then
echo "PASS_MAX_DAYS $var_accounts_maximum_age_login_defs" >> /etc/login.defs
fi
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Strategy: | restrict |
---|
- name: XCCDF Value var_accounts_maximum_age_login_defs # promote to variable
set_fact:
var_accounts_maximum_age_login_defs: 90
tags:
- always
- name: Set Password Maximum Age
lineinfile:
create: yes
dest: /etc/login.defs
regexp: ^#?PASS_MAX_DAYS
line: "PASS_MAX_DAYS {{ var_accounts_maximum_age_login_defs }}"
tags:
- accounts_maximum_age_login_defs
- medium_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27051-2
- NIST-800-53-IA-5(f)
- NIST-800-53-IA-5(g)
- NIST-800-53-IA-5(1)(d)
- NIST-800-171-3.5.6
- PCI-DSS-Req-8.2.4
- CJIS-5.6.2.1
- DISA-STIG-OL-07-010250
|
Set Account Expiration Parameters
[ref]groupAccounts can be configured to be automatically disabled
after a certain time period,
meaning that they will require administrator interaction to become usable again.
Expiration of accounts after inactivity can be set for all accounts by default
and also on a per-account basis, such as for accounts that are known to be temporary.
To configure automatic expiration of an account following
the expiration of its password (that is, after the password has expired and not been changed),
run the following command, substituting NUM_DAYS and USER appropriately:
$ sudo chage -I NUM_DAYS USER
Accounts, such as temporary accounts, can also be configured to expire on an explicitly-set date with the
-E option.
The file /etc/default/useradd controls
default settings for all newly-created accounts created with the system's
normal command line utilities.
|
contains 2 rules |
Set Account Expiration Following Inactivity
[ref]ruleTo specify the number of days after a password expires (which
signifies inactivity) until an account is permanently disabled, add or correct
the following lines in /etc/default/useradd , substituting
NUM_DAYS appropriately:
INACTIVE=90
A value of 35 is recommended.
If a password is currently on the
verge of expiration, then 35 days remain until the account is automatically
disabled. However, if the password will not expire for another 60 days, then 95
days could elapse until the account would be automatically disabled. See the
useradd man page for more information. Determining the inactivity
timeout must be done with careful consideration of the length of a "normal"
period of inactivity for users in the particular environment. Setting
the timeout too low incurs support costs and also has the potential to impact
availability of the system to legitimate users.
Rationale:
Disabling inactive accounts ensures that accounts which may not
have been responsibly removed are not available to attackers
who may have compromised their credentials.
Remediation Shell script: (show)
var_account_disable_post_pw_expiration="90"
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects four arguments:
#
# config_file: Configuration file that will be modified
# key: Configuration option to change
# value: Value of the configuration option to change
# cce: The CCE identifier or '@CCENUM@' if no CCE identifier exists
#
# Optional arugments:
#
# format: Optional argument to specify the format of how key/value should be
# modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
# With default format of 'key = value':
# replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
# With custom key/value format:
# replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
# With a variable:
# replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
local config_file=$1
local key=$2
local value=$3
local cce=$4
local format=$5
# Check sanity of the input
if [ $# -lt "3" ]
then
echo "Usage: replace_or_append 'config_file_location' 'key_to_search' 'new_value'"
echo
echo "If symlinks need to be taken into account, add yes/no to the last argument"
echo "to allow to 'follow_symlinks'."
echo "Aborting."
exit 1
fi
# Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
# Otherwise, regular sed command will do.
if test -L $config_file; then
sed_command="sed -i --follow-symlinks"
else
sed_command="sed -i"
fi
# Test that the cce arg is not empty or does not equal @CCENUM@.
# If @CCENUM@ exists, it means that there is no CCE assigned.
if ! [ "x$cce" = x ] && [ "$cce" != '@CCENUM@' ]; then
cce="CCE-${cce}"
else
cce="CCE"
fi
# Strip any search characters in the key arg so that the key can be replaced without
# adding any search characters to the config file.
stripped_key=$(sed "s/[\^=\$,;+]*//g" <<< $key)
# If there is no print format specified in the last arg, use the default format.
if ! [ "x$format" = x ] ; then
printf -v formatted_output "$format" "$stripped_key" "$value"
else
formatted_output="$stripped_key = $value"
fi
# If the key exists, change it. Otherwise, add it to the config_file.
if `grep -qi "$key" $config_file` ; then
eval '$sed_command "s/$key.*/$formatted_output/g" $config_file'
else
# \n is precaution for case where file ends without trailing newline
echo -e "\n# Per $cce: Set $formatted_output in $config_file" >> $config_file
echo -e "$formatted_output" >> $config_file
fi
}
replace_or_append '/etc/default/useradd' '^INACTIVE' "$var_account_disable_post_pw_expiration" 'CCE-27355-7' '%s=%s'
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Strategy: | restrict |
---|
- name: XCCDF Value var_account_disable_post_pw_expiration # promote to variable
set_fact:
var_account_disable_post_pw_expiration: 90
tags:
- always
- name: Set Account Expiration Following Inactivity
lineinfile:
create: yes
dest: /etc/default/useradd
regexp: ^INACTIVE
line: "INACTIVE={{ var_account_disable_post_pw_expiration }}"
tags:
- account_disable_post_pw_expiration
- medium_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27355-7
- NIST-800-53-AC-2(2)
- NIST-800-53-AC-2(3)
- NIST-800-53-IA-4(e)
- NIST-800-171-3.5.6
- PCI-DSS-Req-8.1.4
- CJIS-5.6.2.1.1
- DISA-STIG-OL-07-010310
|
Ensure All Accounts on the System Have Unique Names
[ref]rule
Change usernames, or delete accounts, so each has a unique name.
Rationale:
Unique usernames allow for accountability on the system.
|
Protect Accounts by Configuring PAM
[ref]groupPAM, or Pluggable Authentication Modules, is a system
which implements modular authentication for Linux programs. PAM provides
a flexible and configurable architecture for authentication, and it should be configured
to minimize exposure to unnecessary risk. This section contains
guidance on how to accomplish that.
PAM is implemented as a set of shared objects which are
loaded and invoked whenever an application wishes to authenticate a
user. Typically, the application must be running as root in order
to take advantage of PAM, because PAM's modules often need to be able
to access sensitive stores of account information, such as /etc/shadow.
Traditional privileged network listeners
(e.g. sshd) or SUID programs (e.g. sudo) already meet this
requirement. An SUID root application, userhelper, is provided so
that programs which are not SUID or privileged themselves can still
take advantage of PAM.
PAM looks in the directory /etc/pam.d for
application-specific configuration information. For instance, if
the program login attempts to authenticate a user, then PAM's
libraries follow the instructions in the file /etc/pam.d/login
to determine what actions should be taken.
One very important file in /etc/pam.d is
/etc/pam.d/system-auth . This file, which is included by
many other PAM configuration files, defines 'default' system authentication
measures. Modifying this file is a good way to make far-reaching
authentication changes, for instance when implementing a
centralized authentication service. Warning:
Be careful when making changes to PAM's
configuration files. The syntax for these files is complex, and
modifications can have unexpected consequences. The default
configurations shipped with applications should be sufficient for
most users. |
contains 11 rules |
Set Password Quality Requirements
[ref]groupThe default pam_pwquality PAM module provides strength
checking for passwords. It performs a number of checks, such as
making sure passwords are not similar to dictionary words, are of
at least a certain length, are not the previous password reversed,
and are not simply a change of case from the previous password. It
can also require passwords to be in certain character classes. The
pam_pwquality module is the preferred way of configuring
password requirements.
The pam_cracklib PAM module can also provide strength
checking for passwords as the pam_pwquality module.
It performs a number of checks, such as making sure passwords are
not similar to dictionary words, are of at least a certain length,
are not the previous password reversed, and are not simply a change
of case from the previous password. It can also require passwords to
be in certain character classes.
The man pages pam_pwquality(8) and pam_cracklib(8)
provide information on the capabilities and configuration of
each. |
contains 4 rules |
Set Password Quality Requirements with pam_pwquality
[ref]groupThe pam_pwquality PAM module can be configured to meet
requirements for a variety of policies.
For example, to configure pam_pwquality to require at least one uppercase
character, lowercase character, digit, and other (special)
character, make sure that pam_pwquality exists in /etc/pam.d/system-auth :
password requisite pam_pwquality.so try_first_pass local_users_only retry=3 authtok_type=
If no such line exists, add one as the first line of the password section in /etc/pam.d/system-auth .
Next, modify the settings in /etc/security/pwquality.conf to match the following:
difok = 4
minlen = 14
dcredit = -1
ucredit = -1
lcredit = -1
ocredit = -1
maxrepeat = 3
The arguments can be modified to ensure compliance with
your organization's security policy. Discussion of each parameter follows.
Warning:
Note that the password quality
requirements are not enforced for the root account for some
reason. |
contains 4 rules |
Set Password Strength Minimum Digit Characters
[ref]ruleThe pam_pwquality module's dcredit parameter controls requirements for
usage of digits in a password. When set to a negative number, any password will be required to
contain that many digits. When set to a positive number, pam_pwquality will grant +1 additional
length credit for each digit. Modify the dcredit setting in
/etc/security/pwquality.conf to require the use of a digit in passwords.
Rationale:
Use of a complex password helps to increase the time and resources required
to compromise the password. Password complexity, or strength, is a measure of
the effectiveness of a password in resisting attempts at guessing and brute-force
attacks.
Password complexity is one factor of several that determines how long it takes
to crack a password. The more complex the password, the greater the number of
possble combinations that need to be tested before the password is compromised.
Requiring digits makes password guessing attacks more difficult by ensuring a larger
search space.
Remediation Shell script: (show)
var_password_pam_dcredit="-1"
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects four arguments:
#
# config_file: Configuration file that will be modified
# key: Configuration option to change
# value: Value of the configuration option to change
# cce: The CCE identifier or '@CCENUM@' if no CCE identifier exists
#
# Optional arugments:
#
# format: Optional argument to specify the format of how key/value should be
# modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
# With default format of 'key = value':
# replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
# With custom key/value format:
# replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
# With a variable:
# replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
local config_file=$1
local key=$2
local value=$3
local cce=$4
local format=$5
# Check sanity of the input
if [ $# -lt "3" ]
then
echo "Usage: replace_or_append 'config_file_location' 'key_to_search' 'new_value'"
echo
echo "If symlinks need to be taken into account, add yes/no to the last argument"
echo "to allow to 'follow_symlinks'."
echo "Aborting."
exit 1
fi
# Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
# Otherwise, regular sed command will do.
if test -L $config_file; then
sed_command="sed -i --follow-symlinks"
else
sed_command="sed -i"
fi
# Test that the cce arg is not empty or does not equal @CCENUM@.
# If @CCENUM@ exists, it means that there is no CCE assigned.
if ! [ "x$cce" = x ] && [ "$cce" != '@CCENUM@' ]; then
cce="CCE-${cce}"
else
cce="CCE"
fi
# Strip any search characters in the key arg so that the key can be replaced without
# adding any search characters to the config file.
stripped_key=$(sed "s/[\^=\$,;+]*//g" <<< $key)
# If there is no print format specified in the last arg, use the default format.
if ! [ "x$format" = x ] ; then
printf -v formatted_output "$format" "$stripped_key" "$value"
else
formatted_output="$stripped_key = $value"
fi
# If the key exists, change it. Otherwise, add it to the config_file.
if `grep -qi "$key" $config_file` ; then
eval '$sed_command "s/$key.*/$formatted_output/g" $config_file'
else
# \n is precaution for case where file ends without trailing newline
echo -e "\n# Per $cce: Set $formatted_output in $config_file" >> $config_file
echo -e "$formatted_output" >> $config_file
fi
}
replace_or_append '/etc/security/pwquality.conf' '^dcredit' $var_password_pam_dcredit 'CCE-27214-6' '%s = %s'
Remediation Ansible snippet: (show)
- name: XCCDF Value var_password_pam_dcredit # promote to variable
set_fact:
var_password_pam_dcredit: -1
tags:
- always
- name: Ensure PAM variable dcredit is set accordingly
lineinfile:
create=yes
dest="/etc/security/pwquality.conf"
regexp="^dcredit"
line="dcredit = {{ var_password_pam_dcredit }}"
tags:
- accounts_password_pam_dcredit
- medium_severity
- CCE-27214-6
- NIST-800-53-IA-5(1)(a)
- NIST-800-53-IA-5(b)
- NIST-800-53-IA-5(c)
- NIST-800-53-194
- PCI-DSS-Req-8.2.3
- DISA-STIG-OL-07-010140
|
Set Password Minimum Length
[ref]ruleThe pam_pwquality module's minlen parameter controls requirements for
minimum characters required in a password. Add minlen=7
after pam_pwquality to set minimum password length requirements.
Rationale:
The shorter the password, the lower the number of possible combinations
that need to be tested before the password is compromised.
Password complexity, or strength, is a measure of the effectiveness of a
password in resisting attempts at guessing and brute-force attacks.
Password length is one factor of several that helps to determine strength
and how long it takes to crack a password. Use of more characters in a password
helps to exponentially increase the time and/or resources required to
compromose the password.
Remediation Shell script: (show)
var_password_pam_minlen="7"
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects four arguments:
#
# config_file: Configuration file that will be modified
# key: Configuration option to change
# value: Value of the configuration option to change
# cce: The CCE identifier or '@CCENUM@' if no CCE identifier exists
#
# Optional arugments:
#
# format: Optional argument to specify the format of how key/value should be
# modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
# With default format of 'key = value':
# replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
# With custom key/value format:
# replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
# With a variable:
# replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
local config_file=$1
local key=$2
local value=$3
local cce=$4
local format=$5
# Check sanity of the input
if [ $# -lt "3" ]
then
echo "Usage: replace_or_append 'config_file_location' 'key_to_search' 'new_value'"
echo
echo "If symlinks need to be taken into account, add yes/no to the last argument"
echo "to allow to 'follow_symlinks'."
echo "Aborting."
exit 1
fi
# Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
# Otherwise, regular sed command will do.
if test -L $config_file; then
sed_command="sed -i --follow-symlinks"
else
sed_command="sed -i"
fi
# Test that the cce arg is not empty or does not equal @CCENUM@.
# If @CCENUM@ exists, it means that there is no CCE assigned.
if ! [ "x$cce" = x ] && [ "$cce" != '@CCENUM@' ]; then
cce="CCE-${cce}"
else
cce="CCE"
fi
# Strip any search characters in the key arg so that the key can be replaced without
# adding any search characters to the config file.
stripped_key=$(sed "s/[\^=\$,;+]*//g" <<< $key)
# If there is no print format specified in the last arg, use the default format.
if ! [ "x$format" = x ] ; then
printf -v formatted_output "$format" "$stripped_key" "$value"
else
formatted_output="$stripped_key = $value"
fi
# If the key exists, change it. Otherwise, add it to the config_file.
if `grep -qi "$key" $config_file` ; then
eval '$sed_command "s/$key.*/$formatted_output/g" $config_file'
else
# \n is precaution for case where file ends without trailing newline
echo -e "\n# Per $cce: Set $formatted_output in $config_file" >> $config_file
echo -e "$formatted_output" >> $config_file
fi
}
replace_or_append '/etc/security/pwquality.conf' '^minlen' $var_password_pam_minlen 'CCE-27293-0' '%s = %s'
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Strategy: | restrict |
---|
- name: XCCDF Value var_password_pam_minlen # promote to variable
set_fact:
var_password_pam_minlen: 7
tags:
- always
- name: Ensure PAM variable minlen is set accordingly
lineinfile:
create=yes
dest="/etc/security/pwquality.conf"
regexp="^minlen"
line="minlen = {{ var_password_pam_minlen }}"
tags:
- accounts_password_pam_minlen
- medium_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27293-0
- NIST-800-53-IA-5(1)(a)
- PCI-DSS-Req-8.2.3
- CJIS-5.6.2.1.1
- DISA-STIG-OL-07-010280
|
Set Password Strength Minimum Uppercase Characters
[ref]ruleThe pam_pwquality module's ucredit= parameter controls requirements for
usage of uppercase letters in a password. When set to a negative number, any password will be required to
contain that many uppercase characters. When set to a positive number, pam_pwquality will grant +1 additional
length credit for each uppercase character. Modify the ucredit setting in
/etc/security/pwquality.conf to require the use of an uppercase character in passwords.
Rationale:
Use of a complex password helps to increase the time and resources reuiqred to compromise the password.
Password complexity, or strength, is a measure of the effectiveness of a password in resisting attempts
at guessing and brute-force attacks.
Password complexity is one factor of several that determines how long it takes to crack a password. The more
complex the password, the greater the number of possible combinations that need to be tested before
the password is compromised.
Remediation Shell script: (show)
var_password_pam_ucredit="-1"
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects four arguments:
#
# config_file: Configuration file that will be modified
# key: Configuration option to change
# value: Value of the configuration option to change
# cce: The CCE identifier or '@CCENUM@' if no CCE identifier exists
#
# Optional arugments:
#
# format: Optional argument to specify the format of how key/value should be
# modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
# With default format of 'key = value':
# replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
# With custom key/value format:
# replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
# With a variable:
# replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
local config_file=$1
local key=$2
local value=$3
local cce=$4
local format=$5
# Check sanity of the input
if [ $# -lt "3" ]
then
echo "Usage: replace_or_append 'config_file_location' 'key_to_search' 'new_value'"
echo
echo "If symlinks need to be taken into account, add yes/no to the last argument"
echo "to allow to 'follow_symlinks'."
echo "Aborting."
exit 1
fi
# Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
# Otherwise, regular sed command will do.
if test -L $config_file; then
sed_command="sed -i --follow-symlinks"
else
sed_command="sed -i"
fi
# Test that the cce arg is not empty or does not equal @CCENUM@.
# If @CCENUM@ exists, it means that there is no CCE assigned.
if ! [ "x$cce" = x ] && [ "$cce" != '@CCENUM@' ]; then
cce="CCE-${cce}"
else
cce="CCE"
fi
# Strip any search characters in the key arg so that the key can be replaced without
# adding any search characters to the config file.
stripped_key=$(sed "s/[\^=\$,;+]*//g" <<< $key)
# If there is no print format specified in the last arg, use the default format.
if ! [ "x$format" = x ] ; then
printf -v formatted_output "$format" "$stripped_key" "$value"
else
formatted_output="$stripped_key = $value"
fi
# If the key exists, change it. Otherwise, add it to the config_file.
if `grep -qi "$key" $config_file` ; then
eval '$sed_command "s/$key.*/$formatted_output/g" $config_file'
else
# \n is precaution for case where file ends without trailing newline
echo -e "\n# Per $cce: Set $formatted_output in $config_file" >> $config_file
echo -e "$formatted_output" >> $config_file
fi
}
replace_or_append '/etc/security/pwquality.conf' '^ucredit' $var_password_pam_ucredit 'CCE-27200-5' '%s = %s'
Remediation Ansible snippet: (show)
- name: XCCDF Value var_password_pam_ucredit # promote to variable
set_fact:
var_password_pam_ucredit: -1
tags:
- always
- name: Ensure PAM variable ucredit is set accordingly
lineinfile:
create=yes
dest="/etc/security/pwquality.conf"
regexp="^ucredit"
line="ucredit = {{ var_password_pam_ucredit }}"
tags:
- accounts_password_pam_ucredit
- medium_severity
- CCE-27200-5
- NIST-800-53-IA-5(b)
- NIST-800-53-IA-5(c)
- NIST-800-53-IA-5(1)(a)
- PCI-DSS-Req-8.2.3
- DISA-STIG-OL-07-010120
|
Set Password Strength Minimum Lowercase Characters
[ref]ruleThe pam_pwquality module's lcredit parameter controls requirements for
usage of lowercase letters in a password. When set to a negative number, any password will be required to
contain that many lowercase characters. When set to a positive number, pam_pwquality will grant +1 additional
length credit for each lowercase character. Modify the lcredit setting in
/etc/security/pwquality.conf to require the use of a lowercase character in passwords.
Rationale:
Use of a complex password helps to increase the time and resources required
to compromise the password. Password complexity, or strength, is a measure of
the effectiveness of a password in resisting attempts at guessing and brute-force
attacks.
Password complexity is one factor of several that determines how long it takes
to crack a password. The more complex the password, the greater the number of
possble combinations that need to be tested before the password is compromised.
Requiring a minimum number of lowercase characters makes password guessing attacks
more difficult by ensuring a larger search space.
Remediation Shell script: (show)
var_password_pam_lcredit="-1"
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects four arguments:
#
# config_file: Configuration file that will be modified
# key: Configuration option to change
# value: Value of the configuration option to change
# cce: The CCE identifier or '@CCENUM@' if no CCE identifier exists
#
# Optional arugments:
#
# format: Optional argument to specify the format of how key/value should be
# modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
# With default format of 'key = value':
# replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
# With custom key/value format:
# replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
# With a variable:
# replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
local config_file=$1
local key=$2
local value=$3
local cce=$4
local format=$5
# Check sanity of the input
if [ $# -lt "3" ]
then
echo "Usage: replace_or_append 'config_file_location' 'key_to_search' 'new_value'"
echo
echo "If symlinks need to be taken into account, add yes/no to the last argument"
echo "to allow to 'follow_symlinks'."
echo "Aborting."
exit 1
fi
# Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
# Otherwise, regular sed command will do.
if test -L $config_file; then
sed_command="sed -i --follow-symlinks"
else
sed_command="sed -i"
fi
# Test that the cce arg is not empty or does not equal @CCENUM@.
# If @CCENUM@ exists, it means that there is no CCE assigned.
if ! [ "x$cce" = x ] && [ "$cce" != '@CCENUM@' ]; then
cce="CCE-${cce}"
else
cce="CCE"
fi
# Strip any search characters in the key arg so that the key can be replaced without
# adding any search characters to the config file.
stripped_key=$(sed "s/[\^=\$,;+]*//g" <<< $key)
# If there is no print format specified in the last arg, use the default format.
if ! [ "x$format" = x ] ; then
printf -v formatted_output "$format" "$stripped_key" "$value"
else
formatted_output="$stripped_key = $value"
fi
# If the key exists, change it. Otherwise, add it to the config_file.
if `grep -qi "$key" $config_file` ; then
eval '$sed_command "s/$key.*/$formatted_output/g" $config_file'
else
# \n is precaution for case where file ends without trailing newline
echo -e "\n# Per $cce: Set $formatted_output in $config_file" >> $config_file
echo -e "$formatted_output" >> $config_file
fi
}
replace_or_append '/etc/security/pwquality.conf' '^lcredit' $var_password_pam_lcredit 'CCE-27345-8' '%s = %s'
Remediation Ansible snippet: (show)
- name: XCCDF Value var_password_pam_lcredit # promote to variable
set_fact:
var_password_pam_lcredit: -1
tags:
- always
- name: Ensure PAM variable lcredit is set accordingly
lineinfile:
create=yes
dest="/etc/security/pwquality.conf"
regexp="^lcredit"
line="lcredit = {{ var_password_pam_lcredit }}"
tags:
- accounts_password_pam_lcredit
- medium_severity
- CCE-27345-8
- NIST-800-53-IA-5(b)
- NIST-800-53-IA-5(c)
- NIST-800-53-IA-5(1)(a)
- PCI-DSS-Req-8.2.3
- DISA-STIG-OL-07-010130
|
Set Lockouts for Failed Password Attempts
[ref]groupThe pam_faillock PAM module provides the capability to
lock out user accounts after a number of failed login attempts. Its
documentation is available in
/usr/share/doc/pam-VERSION/txts/README.pam_faillock .
Warning:
Locking out user accounts presents the
risk of a denial-of-service attack. The lockout policy
must weigh whether the risk of such a
denial-of-service attack outweighs the benefits of thwarting
password guessing attacks. |
contains 3 rules |
Set Deny For Failed Password Attempts
[ref]rule
To configure the system to lock out accounts after a number of incorrect login
attempts using pam_faillock.so , modify the content of both
/etc/pam.d/system-auth and /etc/pam.d/password-auth as follows:
- add the following line immediately
before the pam_unix.so statement in the AUTH section:
auth required pam_faillock.so preauth silent deny=6 unlock_time=1800 fail_interval=900 - add the following line immediately
after the pam_unix.so statement in the AUTH section:
auth [default=die] pam_faillock.so authfail deny=6 unlock_time=1800 fail_interval=900 - add the following line immediately
before the pam_unix.so statement in the ACCOUNT section:
account required pam_faillock.so
Rationale:
Locking out user accounts after a number of incorrect attempts
prevents direct password guessing attacks.
Remediation Shell script: (show)
var_accounts_passwords_pam_faillock_deny="6"
AUTH_FILES[0]="/etc/pam.d/system-auth"
AUTH_FILES[1]="/etc/pam.d/password-auth"
# This script fixes absence of pam_faillock.so in PAM stack or the
# absense of deny=[0-9]+ in pam_faillock.so arguments
# When inserting auth pam_faillock.so entries,
# the entry with preauth argument will be added before pam_unix.so module
# and entry with authfail argument will be added before pam_deny.so module.
# The placement of pam_faillock.so entries will not be changed
# if they are already present
for pamFile in "${AUTH_FILES[@]}"
do
# pam_faillock.so already present?
if grep -q "^auth.*pam_faillock.so.*" $pamFile; then
# pam_faillock.so present, deny directive present?
if grep -q "^auth.*[default=die].*pam_faillock.so.*authfail.*deny=" $pamFile; then
# both pam_faillock.so & deny present, just correct deny directive value
sed -i --follow-symlinks "s/\(^auth.*required.*pam_faillock.so.*preauth.*silent.*\)\(deny *= *\).*/\1\2$var_accounts_passwords_pam_faillock_deny/" $pamFile
sed -i --follow-symlinks "s/\(^auth.*[default=die].*pam_faillock.so.*authfail.*\)\(deny *= *\).*/\1\2$var_accounts_passwords_pam_faillock_deny/" $pamFile
# pam_faillock.so present, but deny directive not yet
else
# append correct deny value to appropriate places
sed -i --follow-symlinks "/^auth.*required.*pam_faillock.so.*preauth.*silent.*/ s/$/ deny=$var_accounts_passwords_pam_faillock_deny/" $pamFile
sed -i --follow-symlinks "/^auth.*[default=die].*pam_faillock.so.*authfail.*/ s/$/ deny=$var_accounts_passwords_pam_faillock_deny/" $pamFile
fi
# pam_faillock.so not present yet
else
# insert pam_faillock.so preauth row with proper value of the 'deny' option before pam_unix.so
sed -i --follow-symlinks "/^auth.*pam_unix.so.*/i auth required pam_faillock.so preauth silent deny=$var_accounts_passwords_pam_faillock_deny" $pamFile
# insert pam_faillock.so authfail row with proper value of the 'deny' option before pam_deny.so, after all modules which determine authentication outcome.
sed -i --follow-symlinks "/^auth.*pam_deny.so.*/i auth [default=die] pam_faillock.so authfail deny=$var_accounts_passwords_pam_faillock_deny" $pamFile
fi
# add pam_faillock.so into account phase
if ! grep -q "^account.*required.*pam_faillock.so" $pamFile; then
sed -i --follow-symlinks "/^account.*required.*pam_unix.so/i account required pam_faillock.so" $pamFile
fi
done
|
Set Lockout Time For Failed Password Attempts
[ref]rule
To configure the system to lock out accounts after a number of incorrect login
attempts and require an administrator to unlock the account using pam_faillock.so ,
modify the content of both /etc/pam.d/system-auth and /etc/pam.d/password-auth as follows:
- add the following line immediately
before the pam_unix.so statement in the AUTH section:
auth required pam_faillock.so preauth silent deny=6 unlock_time=1800 fail_interval=900 - add the following line immediately
after the pam_unix.so statement in the AUTH section:
auth [default=die] pam_faillock.so authfail deny=6 unlock_time=1800 fail_interval=900 - add the following line immediately
before the pam_unix.so statement in the ACCOUNT section:
account required pam_faillock.so
Rationale:
Locking out user accounts after a number of incorrect attempts
prevents direct password guessing attacks. Ensuring that an administrator is
involved in unlocking locked accounts draws appropriate attention to such
situations.
Remediation Shell script: (show)
var_accounts_passwords_pam_faillock_unlock_time="1800"
AUTH_FILES[0]="/etc/pam.d/system-auth"
AUTH_FILES[1]="/etc/pam.d/password-auth"
for pamFile in "${AUTH_FILES[@]}"
do
# pam_faillock.so already present?
if grep -q "^auth.*pam_faillock.so.*" $pamFile; then
# pam_faillock.so present, unlock_time directive present?
if grep -q "^auth.*[default=die].*pam_faillock.so.*authfail.*unlock_time=" $pamFile; then
# both pam_faillock.so & unlock_time present, just correct unlock_time directive value
sed -i --follow-symlinks "s/\(^auth.*required.*pam_faillock.so.*preauth.*silent.*\)\(unlock_time *= *\).*/\1\2$var_accounts_passwords_pam_faillock_unlock_time/" $pamFile
sed -i --follow-symlinks "s/\(^auth.*[default=die].*pam_faillock.so.*authfail.*\)\(unlock_time *= *\).*/\1\2$var_accounts_passwords_pam_faillock_unlock_time/" $pamFile
# pam_faillock.so present, but unlock_time directive not yet
else
# append correct unlock_time value to appropriate places
sed -i --follow-symlinks "/^auth.*required.*pam_faillock.so.*preauth.*silent.*/ s/$/ unlock_time=$var_accounts_passwords_pam_faillock_unlock_time/" $pamFile
sed -i --follow-symlinks "/^auth.*[default=die].*pam_faillock.so.*authfail.*/ s/$/ unlock_time=$var_accounts_passwords_pam_faillock_unlock_time/" $pamFile
fi
# pam_faillock.so not present yet
else
# insert pam_faillock.so preauth & authfail rows with proper value of the 'unlock_time' option
sed -i --follow-symlinks "/^auth.*sufficient.*pam_unix.so.*/i auth required pam_faillock.so preauth silent unlock_time=$var_accounts_passwords_pam_faillock_unlock_time" $pamFile
sed -i --follow-symlinks "/^auth.*sufficient.*pam_unix.so.*/a auth [default=die] pam_faillock.so authfail unlock_time=$var_accounts_passwords_pam_faillock_unlock_time" $pamFile
sed -i --follow-symlinks "/^account.*required.*pam_unix.so/i account required pam_faillock.so" $pamFile
fi
done
|
Limit Password Reuse
[ref]ruleDo not allow users to reuse recent passwords. This can be
accomplished by using the remember option for the pam_unix
or pam_pwhistory PAM modules.
In the file /etc/pam.d/system-auth , append remember=4
to the line which refers to the pam_unix.so or pam_pwhistory.so module, as shown below:
The DoD STIG requirement is 5 passwords.Rationale:
Preventing re-use of previous passwords helps ensure that a compromised password is not re-used by a user.
Remediation Shell script: (show)
var_password_pam_unix_remember="4"
if grep -q "remember=" /etc/pam.d/system-auth; then
sed -i --follow-symlinks "s/\(^password.*sufficient.*pam_unix.so.*\)\(\(remember *= *\)[^ $]*\)/\1remember=$var_password_pam_unix_remember/" /etc/pam.d/system-auth
else
sed -i --follow-symlinks "/^password[[:space:]]\+sufficient[[:space:]]\+pam_unix.so/ s/$/ remember=$var_password_pam_unix_remember/" /etc/pam.d/system-auth
fi
|
Set Password Hashing Algorithm
[ref]groupThe system's default algorithm for storing password hashes in
/etc/shadow is SHA-512. This can be configured in several
locations. |
contains 3 rules |
Set PAM's Password Hashing Algorithm
[ref]rule
The PAM system service can be configured to only store encrypted representations of passwords.
In /etc/pam.d/system-auth , the password section of the file controls
which PAM modules execute during a password change. Set the pam_unix.so
module in the password section to include the argument sha512 , as shown below:
password sufficient pam_unix.so sha512 other arguments...
This will help ensure when local users change their passwords, hashes for the new
passwords will be generated using the SHA-512 algorithm. This is the default.
Rationale:
Passwords need to be protected at all times, and encryption is the standard method for protecting
passwords. If passwords are not encrypted, they can be plainly read (i.e., clear text) and easily
compromised. Passwords that are encrypted with a weak algorithm are no more protected than if they
are kepy in plain text.
This setting ensures user and group account administration utilities are configured to store only
encrypted representations of passwords. Additionally, the crypt_style configuration option
ensures the use of a strong hashing algorithm that makes password cracking attacks more difficult.
Identifiers:
CCE-27104-9 References:
OL-07-010200, IA-5(b), IA-5(c), IA-5(1)(c), IA-7, CCI-000196, SRG-OS-000073-GPOS-00041, Req-8.2.1, 6.3.1, 5.6.2.2, 3.13.11 Remediation Shell script: (show)
if ! grep -q "^password.*sufficient.*pam_unix.so.*sha512" /etc/pam.d/system-auth; then
sed -i --follow-symlinks "/^password.*sufficient.*pam_unix.so/ s/$/ sha512/" /etc/pam.d/system-auth
fi
|
Set Password Hashing Algorithm in /etc/login.defs
[ref]rule
In /etc/login.defs , add or correct the following line to ensure
the system will use SHA-512 as the hashing algorithm:
ENCRYPT_METHOD SHA512
Rationale:
Passwords need to be protected at all times, and encryption is the standard method for protecting passwords.
If passwords are not encrypted, they can be plainly read (i.e., clear text) and easily compromised. Passwords
that are encrypted with a weak algorithm are no more protected than if they are kept in plain text.
Using a stronger hashing algorithm makes password cracking attacks more difficult.
Identifiers:
CCE-27124-7 References:
OL-07-010210, IA-5(b), IA-5(c), IA-5(1)(c), IA-7, CCI-000196, SRG-OS-000073-GPOS-00041, Req-8.2.1, 6.3.1, 5.6.2.2, 3.13.11 Remediation Shell script: (show)
if grep --silent ^ENCRYPT_METHOD /etc/login.defs ; then
sed -i 's/^ENCRYPT_METHOD.*/ENCRYPT_METHOD SHA512/g' /etc/login.defs
else
echo "" >> /etc/login.defs
echo "ENCRYPT_METHOD SHA512" >> /etc/login.defs
fi
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Strategy: | restrict |
---|
- name: Set Password Hashing Algorithm in /etc/login.defs
lineinfile:
dest: /etc/login.defs
regexp: ^#?ENCRYPT_METHOD
line: ENCRYPT_METHOD SHA512
state: present
tags:
- set_password_hashing_algorithm_logindefs
- medium_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27124-7
- NIST-800-53-IA-5(b)
- NIST-800-53-IA-5(c)
- NIST-800-53-IA-5(1)(c)
- NIST-800-53-IA-7
- NIST-800-171-3.13.11
- PCI-DSS-Req-8.2.1
- CJIS-5.6.2.2
- DISA-STIG-OL-07-010210
|
Set Password Hashing Algorithm in /etc/libuser.conf
[ref]rule
In /etc/libuser.conf , add or correct the following line in its
[defaults] section to ensure the system will use the SHA-512
algorithm for password hashing:
crypt_style = sha512
Rationale:
Passwords need to be protected at all times, and encryption is the standard method for protecting
passwords. If passwords are not encrypted, they can be plainly read (i.e., clear text) and easily
compromised. Passwords that are encrypted with a weak algorithm are no more protected than if they
are kepy in plain text.
This setting ensures user and group account administration utilities are configured to store only
encrypted representations of passwords. Additionally, the crypt_style configuration option
ensures the use of a strong hashing algorithm that makes password cracking attacks more difficult.
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Strategy: | restrict |
---|
- name: Set Password Hashing Algorithm in /etc/libuser.conf
lineinfile:
dest: /etc/libuser.conf
insertafter: "^.default]"
regexp: ^#?crypt_style
line: crypt_style = sha512
state: present
tags:
- set_password_hashing_algorithm_libuserconf
- medium_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27053-8
- NIST-800-53-IA-5(b)
- NIST-800-53-IA-5(c)
- NIST-800-53-IA-5(1)(c)
- NIST-800-53-IA-7
- NIST-800-171-3.13.11
- PCI-DSS-Req-8.2.1
- CJIS-5.6.2.2
- DISA-STIG-OL-07-010220
|
Set Last Logon/Access Notification
[ref]ruleTo configure the system to notify users of last logon/access
using pam_lastlog , add or correct the pam_lastlog settings in
/etc/pam.d/postlogin to read as follows:
session [success=1 default=ignore] pam_succeed_if.so service !~ gdm* service !~ su* quiet
session [default=1] pam_lastlog.so nowtmp showfailed
session optional pam_lastlog.so silent noupdate showfailed
Rationale:
Users need to be aware of activity that occurs regarding
their account. Providing users with information regarding the number
of unsuccessful attempts that were made to login to their account
allows the user to determine if any unauthorized activity has occurred
and gives them an opportunity to notify administrators.
Remediation Shell script: (show)
if ! `grep -q ^[^#].*pam_succeed_if.*showfailed /etc/pam.d/postlogin` ; then
if ! grep `^session.*pam_succeed_if.so /etc/pam.d/postlogin` ; then
echo "session [default=1] pam_lastlog.so nowtmp showfailed" >> /etc/pam.d/postlogin
echo "session optional pam_lastlog.so silent noupdate showfailed" >> /etc/pam.d/postlogin
else
sed -i '/^session.*pam_succeed_if.so/a session\t optional\t pam_lastlog.so silent noupdate showfailed' /etc/pam.d/postlogin
sed -i '/^session.*pam_succeed_if.so/a session\t [default=1]\t pam_lastlog.so nowtmp showfailed' /etc/pam.d/postlogin
fi
else
sed -i "s/session[ ]*\[default=1][ ]*pam_lastlog.so.*/session [default=1] pam_lastlog.so nowtmp showfailed/g" /etc/pam.d/postlogin
sed -i "s/session[ ]*optional[ ]*pam_lastlog.so.*/session optional pam_lastlog.so silent noupdate showfailed/g" /etc/pam.d/postlogin
fi
|
Protect Physical Console Access
[ref]groupIt is impossible to fully protect a system from an
attacker with physical access, so securing the space in which the
system is located should be considered a necessary step. However,
there are some steps which, if taken, make it more difficult for an
attacker to quickly or undetectably modify a system from its
console. |
contains 3 rules |
Set Boot Loader Password
[ref]groupDuring the boot process, the boot loader is
responsible for starting the execution of the kernel and passing
options to it. The boot loader allows for the selection of
different kernels - possibly on different partitions or media.
The default Oracle Linux boot loader for x86 systems is called GRUB2.
Options it can pass to the kernel include single-user mode, which
provides root access without any authentication, and the ability to
disable SELinux. To prevent local users from modifying the boot
parameters and endangering security, protect the boot loader configuration
with a password and ensure its configuration file's permissions
are set properly.
|
contains 2 rules |
Verify /boot/grub2/grub.cfg User Ownership
[ref]ruleThe file /boot/grub2/grub.cfg should
be owned by the root user to prevent destruction
or modification of the file.
To properly set the owner of /boot/grub2/grub.cfg , run the command:
$ sudo chown root /boot/grub2/grub.cfg
Rationale:
Only root should be able to modify important boot parameters.
Remediation Shell script: (show)
chown root /boot/grub2/grub.cfg
|
Verify /boot/grub2/grub.cfg Group Ownership
[ref]ruleThe file /boot/grub2/grub.cfg should
be group-owned by the root group to prevent
destruction or modification of the file.
To properly set the group owner of /boot/grub2/grub.cfg , run the command:
$ sudo chgrp root /boot/grub2/grub.cfg
Rationale:
The root group is a highly-privileged group. Furthermore, the group-owner of this
file should not have any access privileges anyway.
Remediation Shell script: (show)
chgrp root /boot/grub2/grub.cfg
|
Configure Screen Locking
[ref]groupWhen a user must temporarily leave an account
logged-in, screen locking should be employed to prevent passersby
from abusing the account. User education and training is
particularly important for screen locking to be effective, and policies
can be implemented to reinforce this.
Automatic screen locking is only meant as a safeguard for
those cases where a user forgot to lock the screen. |
contains 1 rule |
Hardware Tokens for Authentication
[ref]group
The use of hardware tokens such as smart cards for system login
provides stronger, two-factor authentication than using a username and password.
In Oracle Linux servers and workstations, hardware token login
is not enabled by default and must be enabled in the system settings.
|
contains 1 rule |
Enable Smart Card Login
[ref]rule
To enable smart card authentication, consult the documentation.
For guidance on enabling SSH to authenticate against a Common Access Card (CAC), consult the documentation.
Rationale:Smart card login provides two-factor authentication stronger than
that provided by a username and password combination. Smart cards leverage PKI
(public key infrastructure) in order to provide and verify credentials.
Identifiers:
CCE-80207-4 References:
OL-07-010500, IA-2(2), CCI-000765, CCI-000766, CCI-000767, CCI-000768, CCI-000771, CCI-000772, CCI-000884, Req-8.3, SRG-OS-000104-GPOS-00051, SRG-OS-000106-GPOS-00053, SRG-OS-000107-GPOS-00054, SRG-OS-000109-GPOS-00056, SRG-OS-000108-GPOS-00055, SRG-OS-000108-GPOS-00057, SRG-OS-000108-GPOS-00058 Remediation Shell script: (show)
# Install required packages
# Function to install or uninstall packages on RHEL and Fedora systems.
#
# Example Call(s):
#
# package_command install aide
# package_command remove telnet-server
#
function package_command {
# Load function arguments into local variables
local package_operation=$1
local package=$2
# Check sanity of the input
if [ $# -ne "2" ]
then
echo "Usage: package_command 'install/uninstall' 'rpm_package_name"
echo "Aborting."
exit 1
fi
# If dnf is installed, use dnf; otherwise, use yum
if [ -f "/usr/bin/dnf" ] ; then
install_util="/usr/bin/dnf"
else
install_util="/usr/bin/yum"
fi
if [ "$package_operation" != 'remove' ] ; then
# If the rpm is not installed, install the rpm
if ! /bin/rpm -q --quiet $package; then
$install_util -y $package_operation $package
fi
else
# If the rpm is installed, uninstall the rpm
if /bin/rpm -q --quiet $package; then
$install_util -y $package_operation $package
fi
fi
}
package_command install esc
package_command install pam_pkcs11
# Enable pcscd.socket systemd activation socket
# Function to enable/disable and start/stop services on RHEL and Fedora systems.
#
# Example Call(s):
#
# service_command enable bluetooth
# service_command disable bluetooth.service
#
# Using xinetd:
# service_command disable rsh.socket xinetd=rsh
#
function service_command {
# Load function arguments into local variables
local service_state=$1
local service=$2
local xinetd=$(echo $3 | cut -d'=' -f2)
# Check sanity of the input
if [ $# -lt "2" ]
then
echo "Usage: service_command 'enable/disable' 'service_name.service'"
echo
echo "To enable or disable xinetd services add \'xinetd=service_name\'"
echo "as the last argument"
echo "Aborting."
exit 1
fi
# If systemctl is installed, use systemctl command; otherwise, use the service/chkconfig commands
if [ -f "/usr/bin/systemctl" ] ; then
service_util="/usr/bin/systemctl"
else
service_util="/sbin/service"
chkconfig_util="/sbin/chkconfig"
fi
# If disable is not specified in arg1, set variables to enable services.
# Otherwise, variables are to be set to disable services.
if [ "$service_state" != 'disable' ] ; then
service_state="enable"
service_operation="start"
chkconfig_state="on"
else
service_state="disable"
service_operation="stop"
chkconfig_state="off"
fi
# If chkconfig_util is not empty, use chkconfig/service commands.
if ! [ "x$chkconfig_util" = x ] ; then
$service_util $service $service_operation
$chkconfig_util --level 0123456 $service $chkconfig_state
else
$service_util $service_operation $service
$service_util $service_state $service
fi
# Test if local variable xinetd is empty using non-bashism.
# If empty, then xinetd is not being used.
if ! [ "x$xinetd" = x ] ; then
grep -qi disable /etc/xinetd.d/$xinetd && \
if ! [ "$service_operation" != 'disable' ] ; then
sed -i "s/disable.*/disable = no/gI" /etc/xinetd.d/$xinetd
else
sed -i "s/disable.*/disable = yes/gI" /etc/xinetd.d/$xinetd
fi
fi
}
service_command enable pcscd.socket
# Configure the expected /etc/pam.d/system-auth{,-ac} settings directly
#
# The code below will configure system authentication in the way smart card
# logins will be enabled, but also user login(s) via other method to be allowed
#
# NOTE: It is not possible to use the 'authconfig' command to perform the
# remediation for us, because call of 'authconfig' would discard changes
# for other remediations (see RH BZ#1357019 for details)
#
# Therefore we need to configure the necessary settings directly.
#
# Define system-auth config location
SYSTEM_AUTH_CONF="/etc/pam.d/system-auth"
# Define expected 'pam_env.so' row in $SYSTEM_AUTH_CONF
PAM_ENV_SO="auth.*required.*pam_env.so"
# Define 'pam_succeed_if.so' row to be appended past $PAM_ENV_SO row into $SYSTEM_AUTH_CONF
SYSTEM_AUTH_PAM_SUCCEED="\
auth [success=1 default=ignore] pam_succeed_if.so service notin \
login:gdm:xdm:kdm:xscreensaver:gnome-screensaver:kscreensaver quiet use_uid"
# Define 'pam_pkcs11.so' row to be appended past $SYSTEM_AUTH_PAM_SUCCEED
# row into SYSTEM_AUTH_CONF file
SYSTEM_AUTH_PAM_PKCS11="\
auth [success=done authinfo_unavail=ignore ignore=ignore default=die] \
pam_pkcs11.so nodebug"
# Define smartcard-auth config location
SMARTCARD_AUTH_CONF="/etc/pam.d/smartcard-auth"
# Define 'pam_pkcs11.so' auth section to be appended past $PAM_ENV_SO into $SMARTCARD_AUTH_CONF
SMARTCARD_AUTH_SECTION="\
auth [success=done ignore=ignore default=die] pam_pkcs11.so wait_for_card card_only"
# Define expected 'pam_permit.so' row in $SMARTCARD_AUTH_CONF
PAM_PERMIT_SO="account.*required.*pam_permit.so"
# Define 'pam_pkcs11.so' password section
SMARTCARD_PASSWORD_SECTION="\
password required pam_pkcs11.so"
# First Correct the SYSTEM_AUTH_CONF configuration
if ! grep -q 'pam_pkcs11.so' "$SYSTEM_AUTH_CONF"
then
# Append (expected) pam_succeed_if.so row past the pam_env.so into SYSTEM_AUTH_CONF file
# and append (expected) pam_pkcs11.so row right after the pam_succeed_if.so we just added
# in SYSTEM_AUTH_CONF file
# This will preserve any other already existing row equal to "$SYSTEM_AUTH_PAM_SUCCEED"
echo "$(awk '/^'"$PAM_ENV_SO"'/{print $0 RS "'"$SYSTEM_AUTH_PAM_SUCCEED"'" RS "'"$SYSTEM_AUTH_PAM_PKCS11"'";next}1' "$SYSTEM_AUTH_CONF")" > "$SYSTEM_AUTH_CONF"
fi
# Then also correct the SMARTCARD_AUTH_CONF
if ! grep -q 'pam_pkcs11.so' "$SMARTCARD_AUTH_CONF"
then
# Append (expected) SMARTCARD_AUTH_SECTION row past the pam_env.so into SMARTCARD_AUTH_CONF file
sed -i --follow-symlinks -e '/^'"$PAM_ENV_SO"'/a '"$SMARTCARD_AUTH_SECTION" "$SMARTCARD_AUTH_CONF"
# Append (expected) SMARTCARD_PASSWORD_SECTION row past the pam_permit.so into SMARTCARD_AUTH_CONF file
sed -i --follow-symlinks -e '/^'"$PAM_PERMIT_SO"'/a '"$SMARTCARD_PASSWORD_SECTION" "$SMARTCARD_AUTH_CONF"
fi
# Perform /etc/pam_pkcs11/pam_pkcs11.conf settings below
# Define selected constants for later reuse
SP="[:space:]"
PAM_PKCS11_CONF="/etc/pam_pkcs11/pam_pkcs11.conf"
# Ensure OCSP is turned on in $PAM_PKCS11_CONF
# 1) First replace any occurrence of 'none' value of 'cert_policy' key setting with the correct configuration
sed -i "s/^[$SP]*cert_policy[$SP]\+=[$SP]\+none;/\t\tcert_policy = ca, ocsp_on, signature;/g" "$PAM_PKCS11_CONF"
# 2) Then append 'ocsp_on' value setting to each 'cert_policy' key in $PAM_PKCS11_CONF configuration line,
# which does not contain it yet
sed -i "/ocsp_on/! s/^[$SP]*cert_policy[$SP]\+=[$SP]\+\(.*\);/\t\tcert_policy = \1, ocsp_on;/" "$PAM_PKCS11_CONF"
Remediation Anaconda snippet: (show)
package --add=pam_pkcs11 --add=esc
|
Network Configuration and Firewalls
[ref]groupMost systems must be connected to a network of some
sort, and this brings with it the substantial risk of network
attack. This section discusses the security impact of decisions
about networking which must be made when configuring a system.
This section also discusses firewalls, network access
controls, and other network security frameworks, which allow
system-level rules to be written that can limit an attackers' ability
to connect to your system. These rules can specify that network
traffic should be allowed or denied from certain IP addresses,
hosts, and networks. The rules can also specify which of the
system's network services are available to particular hosts or
networks. |
contains 1 rule |
IPSec Support
[ref]groupSupport for Internet Protocol Security (IPsec)
is provided in Oracle Linux 7 with Libreswan.
|
contains 1 rule |
Install libreswan Package
[ref]ruleThe Libreswan package provides an implementation of IPsec
and IKE, which permits the creation of secure tunnels over
untrusted networks.
The libreswan package can be installed with the following command:
$ sudo yum install libreswan
Rationale:Providing the ability for remote users or systems
to initiate a secure VPN connection protects information when it is
transmitted over a wide area network.
Remediation Shell script: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Strategy: | enable |
---|
# Function to install or uninstall packages on RHEL and Fedora systems.
#
# Example Call(s):
#
# package_command install aide
# package_command remove telnet-server
#
function package_command {
# Load function arguments into local variables
local package_operation=$1
local package=$2
# Check sanity of the input
if [ $# -ne "2" ]
then
echo "Usage: package_command 'install/uninstall' 'rpm_package_name"
echo "Aborting."
exit 1
fi
# If dnf is installed, use dnf; otherwise, use yum
if [ -f "/usr/bin/dnf" ] ; then
install_util="/usr/bin/dnf"
else
install_util="/usr/bin/yum"
fi
if [ "$package_operation" != 'remove' ] ; then
# If the rpm is not installed, install the rpm
if ! /bin/rpm -q --quiet $package; then
$install_util -y $package_operation $package
fi
else
# If the rpm is installed, uninstall the rpm
if /bin/rpm -q --quiet $package; then
$install_util -y $package_operation $package
fi
fi
}
package_command install libreswan
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Strategy: | enable |
---|
- name: Ensure libreswan is installed
package:
name="{{item}}"
state=present
with_items:
- libreswan
tags:
- package_libreswan_installed
- medium_severity
- enable_strategy
- low_complexity
- low_disruption
- CCE-80170-4
- NIST-800-53-AC-17
- NIST-800-53-MA-4
- NIST-800-53-SC-9
- PCI-DSS-Req-4.1
Remediation Puppet snippet: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Strategy: | enable |
---|
include install_libreswan
class install_libreswan {
package { 'libreswan':
ensure => 'installed',
}
}
Remediation Anaconda snippet: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Strategy: | enable |
---|
package --add=libreswan
|
Configure Syslog
[ref]groupThe syslog service has been the default Unix logging mechanism for
many years. It has a number of downsides, including inconsistent log format,
lack of authentication for received messages, and lack of authentication,
encryption, or reliable transport for messages sent over a network. However,
due to its long history, syslog is a de facto standard which is supported by
almost all Unix applications.
In Oracle Linux 7, rsyslog has replaced ksyslogd as the
syslog daemon of choice, and it includes some additional security features
such as reliable, connection-oriented (i.e. TCP) transmission of logs, the
option to log to database formats, and the encryption of log data en route to
a central logging server.
This section discusses how to configure rsyslog for
best effect, and how to use tools provided with the system to maintain and
monitor logs. |
contains 4 rules |
Ensure Proper Configuration of Log Files
[ref]group
The file /etc/rsyslog.conf controls where log message are written.
These are controlled by lines called rules, which consist of a
selector and an action.
These rules are often customized depending on the role of the system, the
requirements of the environment, and whatever may enable
the administrator to most effectively make use of log data.
The default rules in Oracle Linux 7 are:
*.info;mail.none;authpriv.none;cron.none /var/log/messages
authpriv.* /var/log/secure
mail.* -/var/log/maillog
cron.* /var/log/cron
*.emerg *
uucp,news.crit /var/log/spooler
local7.* /var/log/boot.log
See the man page rsyslog.conf(5) for more information.
Note that the rsyslog daemon can be configured to use a timestamp format that
some log processing programs may not understand. If this occurs,
edit the file /etc/rsyslog.conf and add or edit the following line:
$ ActionFileDefaultTemplate RSYSLOG_TraditionalFileFormat
|
contains 3 rules |
Ensure Log Files Are Owned By Appropriate User
[ref]ruleThe owner of all log files written by
rsyslog should be root.
These log files are determined by the second part of each Rule line in
/etc/rsyslog.conf and typically all appear in /var/log .
For each log file LOGFILE referenced in /etc/rsyslog.conf ,
run the following command to inspect the file's owner:
$ ls -l LOGFILE
If the owner is not root , run the following command to
correct this:
$ sudo chown root LOGFILE
Rationale:The log files generated by rsyslog contain valuable information regarding system
configuration, user authentication, and other such information. Log files should be
protected from unauthorized access. |
Ensure Log Files Are Owned By Appropriate Group
[ref]ruleThe group-owner of all log files written by
rsyslog should be root.
These log files are determined by the second part of each Rule line in
/etc/rsyslog.conf and typically all appear in /var/log .
For each log file LOGFILE referenced in /etc/rsyslog.conf ,
run the following command to inspect the file's group owner:
$ ls -l LOGFILE
If the owner is not root , run the following command to
correct this:
$ sudo chgrp root LOGFILE
Rationale:The log files generated by rsyslog contain valuable information regarding system
configuration, user authentication, and other such information. Log files should be
protected from unauthorized access. |
Ensure System Log Files Have Correct Permissions
[ref]ruleThe file permissions for all log files written by
rsyslog should be set to 600, or more restrictive.
These log files are determined by the second part of each Rule line in
/etc/rsyslog.conf and typically all appear in /var/log .
For each log file LOGFILE referenced in /etc/rsyslog.conf ,
run the following command to inspect the file's permissions:
$ ls -l LOGFILE
If the permissions are not 600 or more restrictive,
run the following command to correct this:
$ sudo chmod 0600 LOGFILE
Rationale:Log files can contain valuable information regarding system
configuration. If the system log files are not protected unauthorized
users could change the logged data, eliminating their forensic value.
Remediation Shell script: (show)
# List of log file paths to be inspected for correct permissions
# * Primarily inspect log file paths listed in /etc/rsyslog.conf
RSYSLOG_ETC_CONFIG="/etc/rsyslog.conf"
# * And also the log file paths listed after rsyslog's $IncludeConfig directive
# (store the result into array for the case there's shell glob used as value of IncludeConfig)
RSYSLOG_INCLUDE_CONFIG=($(grep -e "\$IncludeConfig[[:space:]]\+[^[:space:];]\+" /etc/rsyslog.conf | cut -d ' ' -f 2))
# Declare an array to hold the final list of different log file paths
declare -a LOG_FILE_PATHS
# Browse each file selected above as containing paths of log files
# ('/etc/rsyslog.conf' and '/etc/rsyslog.d/*.conf' in the default configuration)
for LOG_FILE in "${RSYSLOG_ETC_CONFIG}" "${RSYSLOG_INCLUDE_CONFIG[@]}"
do
# From each of these files extract just particular log file path(s), thus:
# * Ignore lines starting with space (' '), comment ('#"), or variable syntax ('$') characters,
# * Ignore empty lines,
# * From the remaining valid rows select only fields constituting a log file path
# Text file column is understood to represent a log file path if and only if all of the following are met:
# * it contains at least one slash '/' character,
# * it doesn't contain space (' '), colon (':'), and semicolon (';') characters
# Search log file for path(s) only in case it exists!
if [[ -f "${LOG_FILE}" ]]
then
MATCHED_ITEMS=$(sed -e "/^[[:space:]|#|$]/d ; s/[^\/]*[[:space:]]*\([^:;[:space:]]*\)/\1/g ; /^$/d" "${LOG_FILE}")
# Since above sed command might return more than one item (delimited by newline), split the particular
# matches entries into new array specific for this log file
readarray -t ARRAY_FOR_LOG_FILE <<< "$MATCHED_ITEMS"
# Concatenate the two arrays - previous content of $LOG_FILE_PATHS array with
# items from newly created array for this log file
LOG_FILE_PATHS=("${LOG_FILE_PATHS[@]}" "${ARRAY_FOR_LOG_FILE[@]}")
# Delete the temporary array
unset ARRAY_FOR_LOG_FILE
fi
done
for PATH in "${LOG_FILE_PATHS[@]}"
do
# Sanity check - if particular $PATH is empty string, skip it from further processing
if [ -z "$PATH" ]
then
continue
fi
# In RHEL 7 we have systemd, so it doesn't make sense to patch/change /etc/rc.d/rc.local,
# as per BZ https://bugzilla.redhat.com/show_bug.cgi?id=1404381
# Also for each log file check if its permissions differ from 600. If so, correct them
if [ "$(/usr/bin/stat -c %a "$PATH")" -ne 600 ]
then
/bin/chmod 600 "$PATH"
fi
done
|
Ensure All Logs are Rotated by logrotate
[ref]groupEdit the file /etc/logrotate.d/syslog . Find the first
line, which should look like this (wrapped for clarity):
/var/log/messages /var/log/secure /var/log/maillog /var/log/spooler \
/var/log/boot.log /var/log/cron {
Edit this line so that it contains a one-space-separated
listing of each log file referenced in /etc/rsyslog.conf .
All logs in use on a system must be rotated regularly, or the
log files will consume disk space over time, eventually interfering
with system operation. The file /etc/logrotate.d/syslog is the
configuration file used by the logrotate program to maintain all
log files written by syslog . By default, it rotates logs weekly and
stores four archival copies of each log. These settings can be
modified by editing /etc/logrotate.conf , but the defaults are
sufficient for purposes of this guide.
Note that logrotate is run nightly by the cron job
/etc/cron.daily/logrotate . If particularly active logs need to be
rotated more often than once a day, some other mechanism must be
used. |
contains 1 rule |
Ensure Logrotate Runs Periodically
[ref]ruleThe logrotate utility allows for the automatic rotation of
log files. The frequency of rotation is specified in /etc/logrotate.conf ,
which triggers a cron task. To configure logrotate to run daily, add or correct
the following line in /etc/logrotate.conf :
# rotate log files frequency
daily
Rationale:Log files that are not properly rotated run the risk of growing so large
that they fill up the /var/log partition. Valuable logging information could be lost
if the /var/log partition becomes full. |
System Accounting with auditd
[ref]groupThe audit service provides substantial capabilities
for recording system activities. By default, the service audits about
SELinux AVC denials and certain types of security-relevant events
such as system logins, account modifications, and authentication
events performed by programs such as sudo.
Under its default configuration, auditd has modest disk space
requirements, and should not noticeably impact system performance.
NOTE: The Linux Audit daemon auditd can be configured to use
the augenrules program to read audit rules files (*.rules )
located in /etc/audit/rules.d location and compile them to create
the resulting form of the /etc/audit/audit.rules configuration file
during the daemon startup (default configuration). Alternatively, the auditd
daemon can use the auditctl utility to read audit rules from the
/etc/audit/audit.rules configuration file during daemon startup,
and load them into the kernel. The expected behavior is configured via the
appropriate ExecStartPost directive setting in the
/usr/lib/systemd/system/auditd.service configuration file.
To instruct the auditd daemon to use the augenrules program
to read audit rules (default configuration), use the following setting:
ExecStartPost=-/sbin/augenrules --load
in the /usr/lib/systemd/system/auditd.service configuration file.
In order to instruct the auditd daemon to use the auditctl
utility to read audit rules, use the following setting:
ExecStartPost=-/sbin/auditctl -R /etc/audit/audit.rules
in the /usr/lib/systemd/system/auditd.service configuration file.
Refer to [Service] section of the /usr/lib/systemd/system/auditd.service
configuration file for further details.
Government networks often have substantial auditing
requirements and auditd can be configured to meet these
requirements.
Examining some example audit records demonstrates how the Linux audit system
satisfies common requirements.
The following example from Fedora Documentation available at
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SELinux_Users_and_Administrators_Guide/sect-Security-Enhanced_Linux-Troubleshooting-Fixing_Problems.html#sect-Security-Enhanced_Linux-Fixing_Problems-Raw_Audit_Messages
shows the substantial amount of information captured in a
two typical "raw" audit messages, followed by a breakdown of the most important
fields. In this example the message is SELinux-related and reports an AVC
denial (and the associated system call) that occurred when the Apache HTTP
Server attempted to access the /var/www/html/file1 file (labeled with
the samba_share_t type):
type=AVC msg=audit(1226874073.147:96): avc: denied { getattr } for pid=2465 comm="httpd"
path="/var/www/html/file1" dev=dm-0 ino=284133 scontext=unconfined_u:system_r:httpd_t:s0
tcontext=unconfined_u:object_r:samba_share_t:s0 tclass=file
type=SYSCALL msg=audit(1226874073.147:96): arch=40000003 syscall=196 success=no exit=-13
a0=b98df198 a1=bfec85dc a2=54dff4 a3=2008171 items=0 ppid=2463 pid=2465 auid=502 uid=48
gid=48 euid=48 suid=48 fsuid=48 egid=48 sgid=48 fsgid=48 tty=(none) ses=6 comm="httpd"
exe="/usr/sbin/httpd" subj=unconfined_u:system_r:httpd_t:s0 key=(null)
msg=audit(1226874073.147:96) - The number in parentheses is the unformatted time stamp (Epoch time)
for the event, which can be converted to standard time by using the
date command.
{ getattr } - The item in braces indicates the permission that was denied.
getattr
indicates the source process was trying to read the target file's status information.
This occurs before reading files. This action is denied due to the file being
accessed having the wrong label. Commonly seen permissions include getattr ,
read , and write .
comm="httpd" - The executable that launched the process. The full path of the executable is
found in the
exe= section of the system call (SYSCALL ) message,
which in this case, is exe="/usr/sbin/httpd" .
path="/var/www/html/file1" - The path to the object (target) the process attempted to access.
scontext="unconfined_u:system_r:httpd_t:s0" - The SELinux context of the process that attempted the denied action. In
this case, it is the SELinux context of the Apache HTTP Server, which is running
in the
httpd_t domain.
tcontext="unconfined_u:object_r:samba_share_t:s0" - The SELinux context of the object (target) the process attempted to access.
In this case, it is the SELinux context of
file1 . Note: the samba_share_t
type is not accessible to processes running in the httpd_t domain.
- From the system call (
SYSCALL ) message, two items are of interest:
success=no : indicates whether the denial (AVC) was enforced or not.
success=no indicates the system call was not successful (SELinux denied
access). success=yes indicates the system call was successful - this can
be seen for permissive domains or unconfined domains, such as initrc_t
and kernel_t .
exe="/usr/sbin/httpd" : the full path to the executable that launched
the process, which in this case, is exe="/usr/sbin/httpd" .
|
contains 41 rules |
Configure auditd Data Retention
[ref]group
The audit system writes data to /var/log/audit/audit.log . By default,
auditd rotates 5 logs by size (6MB), retaining a maximum of 30MB of
data in total, and refuses to write entries when the disk is too
full. This minimizes the risk of audit data filling its partition
and impacting other services. This also minimizes the risk of the audit
daemon temporarily disabling the system if it cannot write audit log (which
it can be configured to do).
For a busy
system or a system which is thoroughly auditing system activity, the default settings
for data retention may be
insufficient. The log file size needed will depend heavily on what types
of events are being audited. First configure auditing to log all the events of
interest. Then monitor the log size manually for awhile to determine what file
size will allow you to keep the required data for the correct time period.
Using a dedicated partition for /var/log/audit prevents the
auditd logs from disrupting system functionality if they fill, and,
more importantly, prevents other activity in /var from filling the
partition and stopping the audit trail. (The audit logs are size-limited and
therefore unlikely to grow without bound unless configured to do so.) Some
machines may have requirements that no actions occur which cannot be audited.
If this is the case, then auditd can be configured to halt the machine
if it runs out of space. Note: Since older logs are rotated,
configuring auditd this way does not prevent older logs from being
rotated away before they can be viewed.
If your system is configured to halt when logging cannot be performed, make
sure this can never happen under normal circumstances! Ensure that
/var/log/audit is on its own partition, and that this partition is
larger than the maximum amount of data auditd will retain
normally.
References:
AU-11, CCI-000138 |
contains 7 rules |
Configure auditd Number of Logs Retained
[ref]ruleDetermine how many log files
auditd should retain when it rotates logs.
Edit the file /etc/audit/auditd.conf . Add or modify the following
line, substituting NUMLOGS with the correct value of 5:
num_logs = NUMLOGS
Set the value to 5 for general-purpose systems.
Note that values less than 2 result in no log rotation.Rationale:The total storage for audit log files must be large enough to retain
log information over the period required. This is a function of the maximum log
file size and the number of logs retained. Remediation Shell script: (show)
var_auditd_num_logs="5"
AUDITCONFIG=/etc/audit/auditd.conf
grep -q ^num_logs $AUDITCONFIG && \
sed -i 's/^num_logs.*/num_logs = '"$var_auditd_num_logs"'/g' $AUDITCONFIG
if ! [ $? -eq 0 ]; then
echo "num_logs = $var_auditd_num_logs" >> $AUDITCONFIG
fi
|
Configure auditd Max Log File Size
[ref]ruleDetermine the amount of audit data (in megabytes)
which should be retained in each log file. Edit the file
/etc/audit/auditd.conf . Add or modify the following line, substituting
the correct value of 6 for STOREMB:
max_log_file = STOREMB
Set the value to 6 (MB) or higher for general-purpose systems.
Larger values, of course,
support retention of even more audit data.Rationale:The total storage for audit log files must be large enough to retain
log information over the period required. This is a function of the maximum
log file size and the number of logs retained. Remediation Shell script: (show)
var_auditd_max_log_file="6"
AUDITCONFIG=/etc/audit/auditd.conf
grep -q ^max_log_file $AUDITCONFIG && \
sed -i 's/^max_log_file.*/max_log_file = '"$var_auditd_max_log_file"'/g' $AUDITCONFIG
if ! [ $? -eq 0 ]; then
echo "max_log_file = $var_auditd_max_log_file" >> $AUDITCONFIG
fi
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Strategy: | restrict |
---|
- name: XCCDF Value var_auditd_max_log_file # promote to variable
set_fact:
var_auditd_max_log_file: 6
tags:
- always
- name: Configure auditd Max Log File Size
lineinfile:
dest: /etc/audit/auditd.conf
line: "max_log_file {{ var_auditd_max_log_file }}"
state: present
#notify: reload auditd
tags:
- auditd_data_retention_max_log_file
- medium_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27319-3
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-11
- NIST-800-53-IR-5
- PCI-DSS-Req-10.7
- CJIS-5.4.1.1
|
Configure auditd max_log_file_action Upon Reaching Maximum Log Size
[ref]rule The default action to take when the logs reach their maximum size
is to rotate the log files, discarding the oldest one. To configure the action taken
by auditd , add or correct the line in /etc/audit/auditd.conf :
max_log_file_action = ACTION
Possible values for ACTION are described in the auditd.conf man
page. These include:
ignore syslog suspend rotate keep_logs
Set the ACTION to rotate to ensure log rotation
occurs. This is the default. The setting is case-insensitive.
Rationale:Automatically rotating logs (by setting this to rotate )
minimizes the chances of the system unexpectedly running out of disk space by
being overwhelmed with log data. However, for systems that must never discard
log data, or which use external processes to transfer it and reclaim space,
keep_logs can be employed. Remediation Shell script: (show)
var_auditd_max_log_file_action="rotate"
AUDITCONFIG=/etc/audit/auditd.conf
grep -q ^max_log_file_action $AUDITCONFIG && \
sed -i 's/^max_log_file_action.*/max_log_file_action = '"$var_auditd_max_log_file_action"'/g' $AUDITCONFIG
if ! [ $? -eq 0 ]; then
echo "max_log_file_action = $var_auditd_max_log_file_action" >> $AUDITCONFIG
fi
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Strategy: | restrict |
---|
- name: XCCDF Value var_auditd_max_log_file_action # promote to variable
set_fact:
var_auditd_max_log_file_action: rotate
tags:
- always
- name: Configure auditd max_log_file_action Upon Reaching Maximum Log Size
lineinfile:
dest: /etc/audit/auditd.conf
line: "max_log_file_action {{ var_auditd_max_log_file_action }}"
state: present
#notify: reload auditd
tags:
- auditd_data_retention_max_log_file_action
- medium_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27231-0
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-4
- NIST-800-53-AU-11
- NIST-800-53-IR-5
- PCI-DSS-Req-10.7
- CJIS-5.4.1.1
|
Configure auditd space_left Action on Low Disk Space
[ref]ruleThe auditd service can be configured to take an action
when disk space starts to run low.
Edit the file /etc/audit/auditd.conf . Modify the following line,
substituting ACTION appropriately:
space_left_action = ACTION
Possible values for ACTION are described in the auditd.conf man page.
These include:
ignore syslog email exec suspend single halt
Set this to email (instead of the default,
which is suspend ) as it is more likely to get prompt attention. Acceptable values
also include suspend , single , and halt .
Rationale:Notifying administrators of an impending disk space problem may
allow them to take corrective action prior to any disruption. Identifiers:
CCE-27375-5 References:
AU-1(b), AU-4, AU-5(1), AU-5(b), IR-5, CCI-001855, Req-10.7, 5.2.1.2, SRG-OS-000343-GPOS-00134, 030340, 5.4.1.1, 3.3.1 Remediation Shell script: (show)
var_auditd_space_left_action="email"
grep -q ^space_left_action /etc/audit/auditd.conf && \
sed -i "s/space_left_action.*/space_left_action = $var_auditd_space_left_action/g" /etc/audit/auditd.conf
if ! [ $? -eq 0 ]; then
echo "space_left_action = $var_auditd_space_left_action" >> /etc/audit/auditd.conf
fi
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Strategy: | restrict |
---|
- name: XCCDF Value var_auditd_space_left_action # promote to variable
set_fact:
var_auditd_space_left_action: email
tags:
- always
- name: Configure auditd space_left Action on Low Disk Space
lineinfile:
dest: /etc/audit/auditd.conf
line: "space_left_action = {{ var_auditd_space_left_action }}"
regexp: ^space_left_action*
#notify: reload auditd
tags:
- auditd_data_retention_space_left_action
- medium_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27375-5
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-4
- NIST-800-53-AU-5(1)
- NIST-800-53-AU-5(b)
- NIST-800-53-IR-5
- NIST-800-171-3.3.1
- PCI-DSS-Req-10.7
- CJIS-5.4.1.1
|
Configure auditd admin_space_left Action on Low Disk Space
[ref]ruleThe auditd service can be configured to take an action
when disk space is running low but prior to running out of space completely.
Edit the file /etc/audit/auditd.conf . Add or modify the following line,
substituting ACTION appropriately:
admin_space_left_action = ACTION
Set this value to single to cause the system to switch to single user
mode for corrective action. Acceptable values also include suspend and
halt . For certain systems, the need for availability
outweighs the need to log all actions, and a different setting should be
determined. Details regarding all possible values for ACTION are described in the
auditd.conf man page.
Rationale:Administrators should be made aware of an inability to record
audit records. If a separate partition or logical volume of adequate size
is used, running low on space for audit records should never occur.
Remediation Shell script: (show)
var_auditd_admin_space_left_action="single"
grep -q ^admin_space_left_action /etc/audit/auditd.conf && \
sed -i "s/admin_space_left_action.*/admin_space_left_action = $var_auditd_admin_space_left_action/g" /etc/audit/auditd.conf
if ! [ $? -eq 0 ]; then
echo "admin_space_left_action = $var_auditd_admin_space_left_action" >> /etc/audit/auditd.conf
fi
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Strategy: | restrict |
---|
- name: XCCDF Value var_auditd_admin_space_left_action # promote to variable
set_fact:
var_auditd_admin_space_left_action: single
tags:
- always
- name: Configure auditd admin_space_left Action on Low Disk Space
lineinfile:
dest: /etc/audit/auditd.conf
line: "admin_space_left_action = {{ var_auditd_admin_space_left_action }}"
regexp: "^admin_space_left_action*"
#notify: reload auditd
tags:
- auditd_data_retention_admin_space_left_action
- medium_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27370-6
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-4
- NIST-800-53-AU-5(b)
- NIST-800-53-IR-5
- NIST-800-171-3.3.1
- PCI-DSS-Req-10.7
- CJIS-5.4.1.1
|
Configure auditd mail_acct Action on Low Disk Space
[ref]ruleThe auditd service can be configured to send email to
a designated account in certain situations. Add or correct the following line
in /etc/audit/auditd.conf to ensure that administrators are notified
via email for those situations:
action_mail_acct = root
Rationale:Email sent to the root account is typically aliased to the
administrators of the system, who can take appropriate action. Identifiers:
CCE-27394-6 References:
OL-07-030350, AU-1(b), AU-4, AU-5(1), AU-5(a), IR-5, CCI-001855, Req-10.7.a, 5.2.1.2, SRG-OS-000343-GPOS-00134, 5.4.1.1, 3.3.1 Remediation Shell script: (show)
var_auditd_action_mail_acct="root"
AUDITCONFIG=/etc/audit/auditd.conf
grep -q ^action_mail_acct $AUDITCONFIG && \
sed -i 's/^action_mail_acct.*/action_mail_acct = '"$var_auditd_action_mail_acct"'/g' $AUDITCONFIG
if ! [ $? -eq 0 ]; then
echo "action_mail_acct = $var_auditd_action_mail_acct" >> $AUDITCONFIG
fi
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Strategy: | restrict |
---|
- name: XCCDF Value var_auditd_action_mail_acct # promote to variable
set_fact:
var_auditd_action_mail_acct: root
tags:
- always
- name: Configure auditd mail_acct Action on Low Disk Space
lineinfile:
dest: /etc/audit/auditd.conf
line: "action_mail_acct = {{ var_auditd_action_mail_acct }}"
state: present
#notify: reload auditd
tags:
- auditd_data_retention_action_mail_acct
- medium_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27394-6
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-4
- NIST-800-53-AU-5(1)
- NIST-800-53-AU-5(a)
- NIST-800-53-IR-5
- NIST-800-171-3.3.1
- PCI-DSS-Req-10.7.a
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030350
|
Configure auditd to use audispd's syslog plugin
[ref]ruleTo configure the auditd service to use the
syslog plug-in of the audispd audit event multiplexor, set
the active line in /etc/audisp/plugins.d/syslog.conf to
yes . Restart the auditd service:
$ sudo service auditd restart
Rationale:The auditd service does not include the ability to send audit
records to a centralized server for management directly. It does, however,
include a plug-in for audit event multiplexor (audispd) to pass audit records
to the local syslog server Remediation Shell script: (show)
grep -q ^active /etc/audisp/plugins.d/syslog.conf && \
sed -i "s/active.*/active = yes/g" /etc/audisp/plugins.d/syslog.conf
if ! [ $? -eq 0 ]; then
echo "active = yes" >> /etc/audisp/plugins.d/syslog.conf
fi
|
Configure auditd Rules for Comprehensive Auditing
[ref]groupThe auditd program can perform comprehensive
monitoring of system activity. This section describes recommended
configuration settings for comprehensive auditing, but a full
description of the auditing system's capabilities is beyond the
scope of this guide. The mailing list linux-audit@redhat.com exists
to facilitate community discussion of the auditing system.
The audit subsystem supports extensive collection of events, including:
- Tracing of arbitrary system calls (identified by name or number)
on entry or exit.
- Filtering by PID, UID, call success, system call argument (with
some limitations), etc.
- Monitoring of specific files for modifications to the file's
contents or metadata.
Auditing rules at startup are controlled by the file /etc/audit/audit.rules .
Add rules to it to meet the auditing requirements for your organization.
Each line in /etc/audit/audit.rules represents a series of arguments
that can be passed to auditctl and can be individually tested
during runtime. See documentation in /usr/share/doc/audit-VERSION and
in the related man pages for more details.
If copying any example audit rulesets from /usr/share/doc/audit-VERSION ,
be sure to comment out the
lines containing arch= which are not appropriate for your system's
architecture. Then review and understand the following rules,
ensuring rules are activated as needed for the appropriate
architecture.
After reviewing all the rules, reading the following sections, and
editing as needed, the new rules can be activated as follows:
$ sudo service auditd restart
|
contains 32 rules |
Records Events that Modify Date and Time Information
[ref]groupArbitrary changes to the system time can be used to obfuscate
nefarious activities in log files, as well as to confuse network services that
are highly dependent upon an accurate system time. All changes to the system
time should be audited. |
contains 5 rules |
Record attempts to alter time through adjtimex
[ref]ruleIf the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following line to a file with suffix .rules in the
directory /etc/audit/rules.d :
-a always,exit -F arch=b32 -S adjtimex -F key=audit_time_rules
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S adjtimex -F key=audit_time_rules
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S adjtimex -F key=audit_time_rules
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S adjtimex -F key=audit_time_rules
The -k option allows for the specification of a key in string form that can be
used for better reporting capability through ausearch and aureport. Multiple
system calls can be defined on the same line to save space if desired, but is
not required. See an example of multiple combined syscalls:
-a always,exit -F arch=b64 -S adjtimex,settimeofday -F key=audit_time_rules
Rationale:Arbitrary changes to the system time can be used to obfuscate
nefarious activities in log files, as well as to confuse network services that
are highly dependent upon an accurate system time (such as sshd). All changes
to the system time should be audited. Identifiers:
CCE-27290-6 References:
AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 5.2.4, Req-10.4.2.b, CCI-001487, CCI-000169, 5.4.1.1, 3.1.7 Remediation Shell script: (show)
# Perform the remediation for the 'adjtimex', 'settimeofday', and 'stime' audit
# system calls on Red Hat Enterprise Linux 7 or Fedora OSes
function rhel7_fedora_perform_audit_adjtimex_settimeofday_stime_remediation {
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
PATTERN="-a always,exit -F arch=${ARCH} -S .* -k *"
# Create expected audit group and audit rule form for particular system call & architecture
if [ ${ARCH} = "b32" ]
then
# stime system call is known at 32-bit arch (see e.g "$ ausyscall i386 stime" 's output)
# so append it to the list of time group system calls to be audited
GROUP="\(adjtimex\|settimeofday\|stime\)"
FULL_RULE="-a always,exit -F arch=${ARCH} -S adjtimex -S settimeofday -S stime -k audit_time_rules"
elif [ ${ARCH} = "b64" ]
then
# stime system call isn't known at 64-bit arch (see "$ ausyscall x86_64 stime" 's output)
# therefore don't add it to the list of time group system calls to be audited
GROUP="\(adjtimex\|settimeofday\)"
FULL_RULE="-a always,exit -F arch=${ARCH} -S adjtimex -S settimeofday -k audit_time_rules"
fi
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
}
rhel7_fedora_perform_audit_adjtimex_settimeofday_stime_remediation
|
Record attempts to alter time through settimeofday
[ref]ruleIf the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following line to a file with suffix .rules in the
directory /etc/audit/rules.d :
-a always,exit -F arch=b32 -S settimeofday -F key=audit_time_rules
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S settimeofday -F key=audit_time_rules
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S settimeofday -F key=audit_time_rules
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S settimeofday -F key=audit_time_rules
The -k option allows for the specification of a key in string form that can be
used for better reporting capability through ausearch and aureport. Multiple
system calls can be defined on the same line to save space if desired, but is
not required. See an example of multiple combined syscalls:
-a always,exit -F arch=b64 -S adjtimex,settimeofday -F key=audit_time_rules
Rationale:Arbitrary changes to the system time can be used to obfuscate
nefarious activities in log files, as well as to confuse network services that
are highly dependent upon an accurate system time (such as sshd). All changes
to the system time should be audited. Identifiers:
CCE-27216-1 References:
AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 5.2.4, Req-10.4.2.b, CCI-001487, CCI-000169, 5.4.1.1, 3.1.7 Remediation Shell script: (show)
# Perform the remediation for the 'adjtimex', 'settimeofday', and 'stime' audit
# system calls on Red Hat Enterprise Linux 7 or Fedora OSes
function rhel7_fedora_perform_audit_adjtimex_settimeofday_stime_remediation {
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
PATTERN="-a always,exit -F arch=${ARCH} -S .* -k *"
# Create expected audit group and audit rule form for particular system call & architecture
if [ ${ARCH} = "b32" ]
then
# stime system call is known at 32-bit arch (see e.g "$ ausyscall i386 stime" 's output)
# so append it to the list of time group system calls to be audited
GROUP="\(adjtimex\|settimeofday\|stime\)"
FULL_RULE="-a always,exit -F arch=${ARCH} -S adjtimex -S settimeofday -S stime -k audit_time_rules"
elif [ ${ARCH} = "b64" ]
then
# stime system call isn't known at 64-bit arch (see "$ ausyscall x86_64 stime" 's output)
# therefore don't add it to the list of time group system calls to be audited
GROUP="\(adjtimex\|settimeofday\)"
FULL_RULE="-a always,exit -F arch=${ARCH} -S adjtimex -S settimeofday -k audit_time_rules"
fi
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
}
rhel7_fedora_perform_audit_adjtimex_settimeofday_stime_remediation
|
Record Attempts to Alter Time Through stime
[ref]ruleIf the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following line to a file with suffix .rules in the
directory /etc/audit/rules.d for both 32 bit and 64 bit systems:
-a always,exit -F arch=b32 -S stime -F key=audit_time_rules
Since the 64 bit version of the "stime" system call is not defined in the audit
lookup table, the corresponding "-F arch=b64" form of this rule is not expected
to be defined on 64 bit systems (the aforementioned "-F arch=b32" stime rule
form itself is sufficient for both 32 bit and 64 bit systems). If the
auditd daemon is configured to use the auditctl utility to
read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file for both 32 bit and 64 bit systems:
-a always,exit -F arch=b32 -S stime -F key=audit_time_rules
Since the 64 bit version of the "stime" system call is not defined in the audit
lookup table, the corresponding "-F arch=b64" form of this rule is not expected
to be defined on 64 bit systems (the aforementioned "-F arch=b32" stime rule
form itself is sufficient for both 32 bit and 64 bit systems). The -k option
allows for the specification of a key in string form that can be used for
better reporting capability through ausearch and aureport. Multiple system
calls can be defined on the same line to save space if desired, but is not
required. See an example of multiple combined system calls:
-a always,exit -F arch=b64 -S adjtimex,settimeofday -F key=audit_time_rules
Rationale:Arbitrary changes to the system time can be used to obfuscate
nefarious activities in log files, as well as to confuse network services that
are highly dependent upon an accurate system time (such as sshd). All changes
to the system time should be audited. Identifiers:
CCE-27299-7 References:
AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, Req-10.4.2.b, CCI-001487, CCI-000169, 5.4.1.1, 3.1.7 Remediation Shell script: (show)
# Perform the remediation for the 'adjtimex', 'settimeofday', and 'stime' audit
# system calls on Red Hat Enterprise Linux 7 or Fedora OSes
function rhel7_fedora_perform_audit_adjtimex_settimeofday_stime_remediation {
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
PATTERN="-a always,exit -F arch=${ARCH} -S .* -k *"
# Create expected audit group and audit rule form for particular system call & architecture
if [ ${ARCH} = "b32" ]
then
# stime system call is known at 32-bit arch (see e.g "$ ausyscall i386 stime" 's output)
# so append it to the list of time group system calls to be audited
GROUP="\(adjtimex\|settimeofday\|stime\)"
FULL_RULE="-a always,exit -F arch=${ARCH} -S adjtimex -S settimeofday -S stime -k audit_time_rules"
elif [ ${ARCH} = "b64" ]
then
# stime system call isn't known at 64-bit arch (see "$ ausyscall x86_64 stime" 's output)
# therefore don't add it to the list of time group system calls to be audited
GROUP="\(adjtimex\|settimeofday\)"
FULL_RULE="-a always,exit -F arch=${ARCH} -S adjtimex -S settimeofday -k audit_time_rules"
fi
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
}
rhel7_fedora_perform_audit_adjtimex_settimeofday_stime_remediation
|
Record Attempts to Alter Time Through clock_settime
[ref]ruleIf the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following line to a file with suffix .rules in the
directory /etc/audit/rules.d :
-a always,exit -F arch=b32 -S clock_settime -F a0=0x0 -F key=time-change
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S clock_settime -F a0=0x0 -F key=time-change
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S clock_settime -F a0=0x0 -F key=time-change
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S clock_settime -F a0=0x0 -F key=time-change
The -k option allows for the specification of a key in string form that can
be used for better reporting capability through ausearch and aureport.
Multiple system calls can be defined on the same line to save space if
desired, but is not required. See an example of multiple combined syscalls:
-a always,exit -F arch=b64 -S adjtimex,settimeofday -F key=audit_time_rules
Rationale:Arbitrary changes to the system time can be used to obfuscate
nefarious activities in log files, as well as to confuse network services that
are highly dependent upon an accurate system time (such as sshd). All changes
to the system time should be audited. Identifiers:
CCE-27219-5 References:
AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 5.2.4, Req-10.4.2.b, CCI-001487, CCI-000169, 5.4.1.1, 3.1.7 Remediation Shell script: (show)
# First perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
PATTERN="-a always,exit -F arch=$ARCH -S clock_settime -F a0=.* \(-F key=\|-k \).*"
GROUP="clock_settime"
FULL_RULE="-a always,exit -F arch=$ARCH -S clock_settime -F a0=0x0 -k time-change"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
# https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool tool used to load audit rules,
# either 'auditctl', or 'augenrules
# * audit rules' pattern audit rule skeleton for same syscall
# * syscall group greatest common string this rule shares
# with other rules from the same group
# * architecture architecture this rule is intended for
# * full form of new rule to add expected full form of audit rule as to be
# added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
# See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {
# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"
# Check sanity of the input
if [ $# -ne "5" ]
then
echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect
retval=0
# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
# Extract audit $key from audit rule so we can use it later
key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
# Check if particular audit rule is already defined
IFS=$'\n' matches=($(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
if [ $? -ne 0 ]
then
retval=1
fi
# Reset IFS back to default
unset IFS
for match in "${matches[@]}"
do
files_to_inspect=("${files_to_inspect[@]}" "${match}")
done
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
files_to_inspect="/etc/audit/rules.d/$key.rules"
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that:
# * follow the rule pattern, and
# * meet the hardware architecture requirement, and
# * are current syscall group specific
IFS=$'\n' existing_rules=($(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d" "$audit_file"))
if [ $? -ne 0 ]
then
retval=1
fi
# Reset IFS back to default
unset IFS
# Process rules found case-by-case
for rule in "${existing_rules[@]}"
do
# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
if [ "${rule}" != "${full_rule}" ]
then
# If so, isolate just '(-S \w)+' substring of that rule
rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
# Check if list of '-S syscall' arguments of that rule is subset
# of '-S syscall' list of expected $full_rule
if grep -q -- "$rule_syscalls" <<< "$full_rule"
then
# Rule is covered (i.e. the list of -S syscalls for this rule is
# subset of -S syscalls of $full_rule => existing rule can be deleted
# Thus delete the rule from audit.rules & our array
sed -i -e "\;${rule};d" "$audit_file"
if [ $? -ne 0 ]
then
retval=1
fi
existing_rules=("${existing_rules[@]//$rule/}")
else
# Rule isn't covered by $full_rule - it besides -S syscall arguments
# for this group contains also -S syscall arguments for other syscall
# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
# since 'lchown' & 'fchownat' share 'chown' substring
# Therefore:
# * 1) delete the original rule from audit.rules
# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
# * 2) delete the -S syscall arguments for this syscall group, but
# keep those not belonging to this syscall group
# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
# * 3) append the modified (filtered) rule again into audit.rules
# if the same rule not already present
#
# 1) Delete the original rule
sed -i -e "\;${rule};d" "$audit_file"
if [ $? -ne 0 ]
then
retval=1
fi
# 2) Delete syscalls for this group, but keep those from other groups
# Convert current rule syscall's string into array splitting by '-S' delimiter
IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
# Reset IFS back to default
unset IFS
# Declare new empty string to hold '-S syscall' arguments from other groups
new_syscalls_for_rule=''
# Walk through existing '-S syscall' arguments
for syscall_arg in "${rule_syscalls_as_array[@]}"
do
# Skip empty $syscall_arg values
if [ "$syscall_arg" == '' ]
then
continue
fi
# If the '-S syscall' doesn't belong to current group add it to the new list
# (together with adding '-S' delimiter back for each of such item found)
if grep -q -v -- "$group" <<< "$syscall_arg"
then
new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
fi
done
# Replace original '-S syscall' list with the new one for this rule
updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
# Squeeze repeated whitespace characters in rule definition (if any) into one
updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
# 3) Append the modified / filtered rule again into audit.rules
# (but only in case it's not present yet to prevent duplicate definitions)
if ! grep -q -- "$updated_rule" "$audit_file"
then
echo "$updated_rule" >> "$audit_file"
fi
fi
else
# $audit_file already contains the expected rule form for this
# architecture & key => don't insert it second time
append_expected_rule=1
fi
done
# We deleted all rules that were subset of the expected one for this arch & key.
# Also isolated rules containing system calls not from this system calls group.
# Now append the expected rule if it's not present in $audit_file yet
if [[ ${append_expected_rule} -eq "0" ]]
then
echo "$full_rule" >> "$audit_file"
fi
done
return $retval
}
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
|
Record Attempts to Alter the localtime File
[ref]ruleIf the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the default),
add the following line to a file with suffix .rules in the directory
/etc/audit/rules.d :
-w /etc/localtime -p wa -k audit_time_rules
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file:
-w /etc/localtime -p wa -k audit_time_rules
The -k option allows for the specification of a key in string form that can
be used for better reporting capability through ausearch and aureport and
should always be used.
Rationale:Arbitrary changes to the system time can be used to obfuscate
nefarious activities in log files, as well as to confuse network services that
are highly dependent upon an accurate system time (such as sshd). All changes
to the system time should be audited. Identifiers:
CCE-27310-2 References:
AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(b), IR-5, 5.2.4, Req-10.4.2.b, CCI-001487, CCI-000169, 5.4.1.1, 3.1.7 Remediation Shell script: (show)
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix audit file system object watch rule for given path:
# * if rule exists, also verifies the -w bits match the requirements
# * if rule doesn't exist yet, appends expected rule form to $files_to_inspect
# audit rules file, depending on the tool which was used to load audit rules
#
# Expects four arguments (each of them is required) in the form of:
# * audit tool tool used to load audit rules,
# either 'auditctl', or 'augenrules'
# * path value of -w audit rule's argument
# * required access bits value of -p audit rule's argument
# * key value of -k audit rule's argument
#
# Example call:
#
# fix_audit_watch_rule "auditctl" "/etc/localtime" "wa" "audit_time_rules"
#
function fix_audit_watch_rule {
# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"
# Check sanity of the input
if [ $# -ne "4" ]
then
echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect
# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
# Get pair -- filepath : matching_row into @matches array
IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset IFS
# For each of the matched entries
for match in "${matches[@]}"
do
# Extract filepath from the match
rulesd_audit_file=$(echo $match | cut -f1 -d ':')
# Append that path into list of files for inspection
files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
done
# Case when particular audit rule isn't defined yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
files_to_inspect="/etc/audit/rules.d/$key.rules"
# If the $key.rules file doesn't exist yet, create it with correct permissions
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Escape slashes in path for use in sed pattern below
local esc_path=${path//$'/'/$'\/'}
# Define BRE whitespace class shortcut
local sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "$required_access_bits" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
fi
done
}
fix_audit_watch_rule "auditctl" "/etc/localtime" "wa" "audit_time_rules"
fix_audit_watch_rule "augenrules" "/etc/localtime" "wa" "audit_time_rules"
|
Record Events that Modify the System's Discretionary Access Controls
[ref]groupAt a minimum, the audit system should collect file permission
changes for all users and root. Note that the "-F arch=b32" lines should be
present even on a 64 bit system. These commands identify system calls for
auditing. Even if the system is 64 bit it can still execute 32 bit system
calls. Additionally, these rules can be configured in a number of ways while
still achieving the desired effect. An example of this is that the "-S" calls
could be split up and placed on separate lines, however, this is less efficient.
Add the following to /etc/audit/audit.rules :
-a always,exit -F arch=b32 -S chmod,fchmod,fchmodat -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
-a always,exit -F arch=b32 -S chown,fchown,fchownat,lchown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
-a always,exit -F arch=b32 -S setxattr,lsetxattr,fsetxattr,removexattr,lremovexattr,fremovexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If your system is 64 bit then these lines should be duplicated and the
arch=b32 replaced with arch=b64 as follows:
-a always,exit -F arch=b64 -S chmod,fchmod,fchmodat -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
-a always,exit -F arch=b64 -S chown,fchown,fchownat,lchown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
-a always,exit -F arch=b64 -S setxattr,lsetxattr,fsetxattr,removexattr,lremovexattr,fremovexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
|
contains 13 rules |
Record Events that Modify the System's Discretionary Access Controls - chmod
[ref]ruleAt a minimum, the audit system should collect file permission
changes for all users and root. If the auditd daemon is configured to
use the augenrules program to read audit rules during daemon startup
(the default), add the following line to a file with suffix .rules in
the directory /etc/audit/rules.d :
-a always,exit -F arch=b32 -S chmod -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S chmod -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S chmod -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S chmod -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
Warning:
Note that these rules can be configured in a
number of ways while still achieving the desired effect. Here the system calls
have been placed independent of other system calls. Grouping these system
calls with others as identifying earlier in this guide is more efficient.
Rationale:The changing of file permissions could indicate that a user is attempting to
gain access to information that would otherwise be disallowed. Auditing DAC modifications
can facilitate the identification of patterns of abuse among both authorized and
unauthorized users. Identifiers:
CCE-27339-1 References:
OL-07-030410, AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, CCI-000126, CCI-000172, Req-10.5.5, 5.2.10, SRG-OS-000064-GPOS-00033, SRG-OS-000392-GPOS-00172, SRG-OS-000458-GPOS-00203, 5.4.1.1, 3.1.7 Remediation Shell script: (show)
# First perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
PATTERN="-a always,exit -F arch=$ARCH -S chmod.*"
GROUP="perm_mod"
FULL_RULE="-a always,exit -F arch=$ARCH -S chmod -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
# https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool tool used to load audit rules,
# either 'auditctl', or 'augenrules
# * audit rules' pattern audit rule skeleton for same syscall
# * syscall group greatest common string this rule shares
# with other rules from the same group
# * architecture architecture this rule is intended for
# * full form of new rule to add expected full form of audit rule as to be
# added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
# See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {
# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"
# Check sanity of the input
if [ $# -ne "5" ]
then
echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect
retval=0
# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
# Extract audit $key from audit rule so we can use it later
key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
# Check if particular audit rule is already defined
IFS=$'\n' matches=($(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
if [ $? -ne 0 ]
then
retval=1
fi
# Reset IFS back to default
unset IFS
for match in "${matches[@]}"
do
files_to_inspect=("${files_to_inspect[@]}" "${match}")
done
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
files_to_inspect="/etc/audit/rules.d/$key.rules"
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that:
# * follow the rule pattern, and
# * meet the hardware architecture requirement, and
# * are current syscall group specific
IFS=$'\n' existing_rules=($(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d" "$audit_file"))
if [ $? -ne 0 ]
then
retval=1
fi
# Reset IFS back to default
unset IFS
# Process rules found case-by-case
for rule in "${existing_rules[@]}"
do
# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
if [ "${rule}" != "${full_rule}" ]
then
# If so, isolate just '(-S \w)+' substring of that rule
rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
# Check if list of '-S syscall' arguments of that rule is subset
# of '-S syscall' list of expected $full_rule
if grep -q -- "$rule_syscalls" <<< "$full_rule"
then
# Rule is covered (i.e. the list of -S syscalls for this rule is
# subset of -S syscalls of $full_rule => existing rule can be deleted
# Thus delete the rule from audit.rules & our array
sed -i -e "\;${rule};d" "$audit_file"
if [ $? -ne 0 ]
then
retval=1
fi
existing_rules=("${existing_rules[@]//$rule/}")
else
# Rule isn't covered by $full_rule - it besides -S syscall arguments
# for this group contains also -S syscall arguments for other syscall
# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
# since 'lchown' & 'fchownat' share 'chown' substring
# Therefore:
# * 1) delete the original rule from audit.rules
# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
# * 2) delete the -S syscall arguments for this syscall group, but
# keep those not belonging to this syscall group
# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
# * 3) append the modified (filtered) rule again into audit.rules
# if the same rule not already present
#
# 1) Delete the original rule
sed -i -e "\;${rule};d" "$audit_file"
if [ $? -ne 0 ]
then
retval=1
fi
# 2) Delete syscalls for this group, but keep those from other groups
# Convert current rule syscall's string into array splitting by '-S' delimiter
IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
# Reset IFS back to default
unset IFS
# Declare new empty string to hold '-S syscall' arguments from other groups
new_syscalls_for_rule=''
# Walk through existing '-S syscall' arguments
for syscall_arg in "${rule_syscalls_as_array[@]}"
do
# Skip empty $syscall_arg values
if [ "$syscall_arg" == '' ]
then
continue
fi
# If the '-S syscall' doesn't belong to current group add it to the new list
# (together with adding '-S' delimiter back for each of such item found)
if grep -q -v -- "$group" <<< "$syscall_arg"
then
new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
fi
done
# Replace original '-S syscall' list with the new one for this rule
updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
# Squeeze repeated whitespace characters in rule definition (if any) into one
updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
# 3) Append the modified / filtered rule again into audit.rules
# (but only in case it's not present yet to prevent duplicate definitions)
if ! grep -q -- "$updated_rule" "$audit_file"
then
echo "$updated_rule" >> "$audit_file"
fi
fi
else
# $audit_file already contains the expected rule form for this
# architecture & key => don't insert it second time
append_expected_rule=1
fi
done
# We deleted all rules that were subset of the expected one for this arch & key.
# Also isolated rules containing system calls not from this system calls group.
# Now append the expected rule if it's not present in $audit_file yet
if [[ ${append_expected_rule} -eq "0" ]]
then
echo "$full_rule" >> "$audit_file"
fi
done
return $retval
}
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Reboot: | true |
---|
Strategy: | restrict |
---|
#
# What architecture are we on?
#
- name: Set architecture for audit chmod tasks
set_fact:
audit_arch: "b{{ ansible_architecture | regex_replace('.*(\\d\\d$)','\\1') }}"
#
# Inserts/replaces the rule in /etc/audit/rules.d
#
- name: Search /etc/audit/rules.d for other DAC audit rules
find:
paths: "/etc/audit/rules.d"
recurse: no
contains: "-F key=perm_mod$"
patterns: "*.rules"
register: find_chmod
- name: If existing DAC ruleset not found, use /etc/audit/rules.d/privileged.rules as the recipient for the rule
set_fact:
all_files:
- /etc/audit/rules.d/privileged.rules
when: find_chmod.matched == 0
- name: Use matched file as the recipient for the rule
set_fact:
all_files:
- "{{ find_chmod.files | map(attribute='path') | list | first }}"
when: find_chmod.matched > 0
- name: Inserts/replaces the chmod rule in rules.d when on x86
lineinfile:
path: "{{ all_files[0] }}"
line: "-a always,exit -F arch=b32 -S chmod -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
create: yes
tags:
- audit_rules_dac_modification_chmod
- low_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27339-1
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030410
- name: Inserts/replaces the chmod rule in rules.d when on x86_64
lineinfile:
path: "{{ all_files[0] }}"
line: "-a always,exit -F arch=b64 -S chmod -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
create: yes
when: audit_arch == 'b64'
tags:
- audit_rules_dac_modification_chmod
- low_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27339-1
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030410
#
# Inserts/replaces the rule in /etc/audit/audit.rules
#
- name: Inserts/replaces the chmod rule in /etc/audit/audit.rules when on x86
lineinfile:
line: "{{ item }}"
state: present
dest: /etc/audit/audit.rules
with_items:
- "-a always,exit -F arch=b32 -S chmod -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
tags:
- audit_rules_dac_modification_chmod
- low_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27339-1
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030410
- name: Inserts/replaces the chmod rule in audit.rules when on x86_64
lineinfile:
line: "{{ item }}"
state: present
dest: /etc/audit/audit.rules
create: yes
with_items:
- "-a always,exit -F arch=b64 -S chmod -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
when: audit_arch == 'b64'
tags:
- audit_rules_dac_modification_chmod
- low_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27339-1
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030410
|
Record Events that Modify the System's Discretionary Access Controls - chown
[ref]ruleAt a minimum, the audit system should collect file permission
changes for all users and root. If the auditd daemon is configured to
use the augenrules program to read audit rules during daemon startup
(the default), add the following line to a file with suffix .rules in
the directory /etc/audit/rules.d :
-a always,exit -F arch=b32 -S chown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S chown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S chown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S chown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
Warning:
Note that these rules can be configured in a
number of ways while still achieving the desired effect. Here the system calls
have been placed independent of other system calls. Grouping these system
calls with others as identifying earlier in this guide is more efficient.
Rationale:The changing of file permissions could indicate that a user is attempting to
gain access to information that would otherwise be disallowed. Auditing DAC modifications
can facilitate the identification of patterns of abuse among both authorized and
unauthorized users. Identifiers:
CCE-27364-9 References:
OL-07-030370, AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, CCI-000126, CCI-000172, Req-10.5.5, 5.2.10, SRG-OS-000064-GPOS-00033, SRG-OS-000392-GPOS-00172, SRG-OS-000458-GPOS-00203, SRG-OS-000474-GPOS-00219, 5.4.1.1, 3.1.7 Remediation Shell script: (show)
# First perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
PATTERN="-a always,exit -F arch=$ARCH -S chown.*"
GROUP="perm_mod"
FULL_RULE="-a always,exit -F arch=$ARCH -S chown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
# https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool tool used to load audit rules,
# either 'auditctl', or 'augenrules
# * audit rules' pattern audit rule skeleton for same syscall
# * syscall group greatest common string this rule shares
# with other rules from the same group
# * architecture architecture this rule is intended for
# * full form of new rule to add expected full form of audit rule as to be
# added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
# See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {
# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"
# Check sanity of the input
if [ $# -ne "5" ]
then
echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect
retval=0
# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
# Extract audit $key from audit rule so we can use it later
key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
# Check if particular audit rule is already defined
IFS=$'\n' matches=($(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
if [ $? -ne 0 ]
then
retval=1
fi
# Reset IFS back to default
unset IFS
for match in "${matches[@]}"
do
files_to_inspect=("${files_to_inspect[@]}" "${match}")
done
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
files_to_inspect="/etc/audit/rules.d/$key.rules"
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that:
# * follow the rule pattern, and
# * meet the hardware architecture requirement, and
# * are current syscall group specific
IFS=$'\n' existing_rules=($(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d" "$audit_file"))
if [ $? -ne 0 ]
then
retval=1
fi
# Reset IFS back to default
unset IFS
# Process rules found case-by-case
for rule in "${existing_rules[@]}"
do
# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
if [ "${rule}" != "${full_rule}" ]
then
# If so, isolate just '(-S \w)+' substring of that rule
rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
# Check if list of '-S syscall' arguments of that rule is subset
# of '-S syscall' list of expected $full_rule
if grep -q -- "$rule_syscalls" <<< "$full_rule"
then
# Rule is covered (i.e. the list of -S syscalls for this rule is
# subset of -S syscalls of $full_rule => existing rule can be deleted
# Thus delete the rule from audit.rules & our array
sed -i -e "\;${rule};d" "$audit_file"
if [ $? -ne 0 ]
then
retval=1
fi
existing_rules=("${existing_rules[@]//$rule/}")
else
# Rule isn't covered by $full_rule - it besides -S syscall arguments
# for this group contains also -S syscall arguments for other syscall
# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
# since 'lchown' & 'fchownat' share 'chown' substring
# Therefore:
# * 1) delete the original rule from audit.rules
# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
# * 2) delete the -S syscall arguments for this syscall group, but
# keep those not belonging to this syscall group
# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
# * 3) append the modified (filtered) rule again into audit.rules
# if the same rule not already present
#
# 1) Delete the original rule
sed -i -e "\;${rule};d" "$audit_file"
if [ $? -ne 0 ]
then
retval=1
fi
# 2) Delete syscalls for this group, but keep those from other groups
# Convert current rule syscall's string into array splitting by '-S' delimiter
IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
# Reset IFS back to default
unset IFS
# Declare new empty string to hold '-S syscall' arguments from other groups
new_syscalls_for_rule=''
# Walk through existing '-S syscall' arguments
for syscall_arg in "${rule_syscalls_as_array[@]}"
do
# Skip empty $syscall_arg values
if [ "$syscall_arg" == '' ]
then
continue
fi
# If the '-S syscall' doesn't belong to current group add it to the new list
# (together with adding '-S' delimiter back for each of such item found)
if grep -q -v -- "$group" <<< "$syscall_arg"
then
new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
fi
done
# Replace original '-S syscall' list with the new one for this rule
updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
# Squeeze repeated whitespace characters in rule definition (if any) into one
updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
# 3) Append the modified / filtered rule again into audit.rules
# (but only in case it's not present yet to prevent duplicate definitions)
if ! grep -q -- "$updated_rule" "$audit_file"
then
echo "$updated_rule" >> "$audit_file"
fi
fi
else
# $audit_file already contains the expected rule form for this
# architecture & key => don't insert it second time
append_expected_rule=1
fi
done
# We deleted all rules that were subset of the expected one for this arch & key.
# Also isolated rules containing system calls not from this system calls group.
# Now append the expected rule if it's not present in $audit_file yet
if [[ ${append_expected_rule} -eq "0" ]]
then
echo "$full_rule" >> "$audit_file"
fi
done
return $retval
}
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Reboot: | true |
---|
Strategy: | restrict |
---|
#
# What architecture are we on?
#
- name: Set architecture for audit chown tasks
set_fact:
audit_arch: "b{{ ansible_architecture | regex_replace('.*(\\d\\d$)','\\1') }}"
#
# Inserts/replaces the rule in /etc/audit/rules.d
#
- name: Search /etc/audit/rules.d for other DAC audit rules
find:
paths: "/etc/audit/rules.d"
recurse: no
contains: "-F key=perm_mod$"
patterns: "*.rules"
register: find_chown
- name: If existing DAC ruleset not found, use /etc/audit/rules.d/privileged.rules as the recipient for the rule
set_fact:
all_files:
- /etc/audit/rules.d/privileged.rules
when: find_chown.matched == 0
- name: Use matched file as the recipient for the rule
set_fact:
all_files:
- "{{ find_chown.files | map(attribute='path') | list | first }}"
when: find_chown.matched > 0
- name: Inserts/replaces the chown rule in rules.d when on x86
lineinfile:
path: "{{ all_files[0] }}"
line: "-a always,exit -F arch=b32 -S chown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
create: yes
tags:
- audit_rules_dac_modification_chown
- low_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27364-9
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030370
- name: Inserts/replaces the chown rule in rules.d when on x86_64
lineinfile:
path: "{{ all_files[0] }}"
line: "-a always,exit -F arch=b64 -S chown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
create: yes
when: audit_arch == 'b64'
tags:
- audit_rules_dac_modification_chown
- low_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27364-9
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030370
#
# Inserts/replaces the rule in /etc/audit/audit.rules
#
- name: Inserts/replaces the chown rule in /etc/audit/audit.rules when on x86
lineinfile:
line: "{{ item }}"
state: present
dest: /etc/audit/audit.rules
with_items:
- "-a always,exit -F arch=b32 -S chown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
tags:
- audit_rules_dac_modification_chown
- low_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27364-9
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030370
- name: Inserts/replaces the chown rule in audit.rules when on x86_64
lineinfile:
line: "{{ item }}"
state: present
dest: /etc/audit/audit.rules
create: yes
with_items:
- "-a always,exit -F arch=b64 -S chown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
when: audit_arch == 'b64'
tags:
- audit_rules_dac_modification_chown
- low_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27364-9
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030370
|
Record Events that Modify the System's Discretionary Access Controls - fchmod
[ref]ruleAt a minimum, the audit system should collect file permission
changes for all users and root. If the auditd daemon is configured to
use the augenrules program to read audit rules during daemon startup
(the default), add the following line to a file with suffix .rules in
the directory /etc/audit/rules.d :
-a always,exit -F arch=b32 -S fchmod -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchmod -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S fchmod -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchmod -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
Warning:
Note that these rules can be configured in a
number of ways while still achieving the desired effect. Here the system calls
have been placed independent of other system calls. Grouping these system
calls with others as identifying earlier in this guide is more efficient.
Rationale:The changing of file permissions could indicate that a user is attempting to
gain access to information that would otherwise be disallowed. Auditing DAC modifications
can facilitate the identification of patterns of abuse among both authorized and
unauthorized users. Identifiers:
CCE-27393-8 References:
OL-07-030420, AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, CCI-000126, CCI-000172, Req-10.5.5, 5.2.10, SRG-OS-000064-GPOS-00033, SRG-OS-000392-GPOS-00172, SRG-OS-000458-GPOS-00203, 5.4.1.1, 3.1.7 Remediation Shell script: (show)
# First perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
PATTERN="-a always,exit -F arch=$ARCH -S fchmod.*"
GROUP="perm_mod"
FULL_RULE="-a always,exit -F arch=$ARCH -S fchmod -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
# https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool tool used to load audit rules,
# either 'auditctl', or 'augenrules
# * audit rules' pattern audit rule skeleton for same syscall
# * syscall group greatest common string this rule shares
# with other rules from the same group
# * architecture architecture this rule is intended for
# * full form of new rule to add expected full form of audit rule as to be
# added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
# See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {
# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"
# Check sanity of the input
if [ $# -ne "5" ]
then
echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect
retval=0
# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
# Extract audit $key from audit rule so we can use it later
key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
# Check if particular audit rule is already defined
IFS=$'\n' matches=($(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
if [ $? -ne 0 ]
then
retval=1
fi
# Reset IFS back to default
unset IFS
for match in "${matches[@]}"
do
files_to_inspect=("${files_to_inspect[@]}" "${match}")
done
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
files_to_inspect="/etc/audit/rules.d/$key.rules"
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that:
# * follow the rule pattern, and
# * meet the hardware architecture requirement, and
# * are current syscall group specific
IFS=$'\n' existing_rules=($(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d" "$audit_file"))
if [ $? -ne 0 ]
then
retval=1
fi
# Reset IFS back to default
unset IFS
# Process rules found case-by-case
for rule in "${existing_rules[@]}"
do
# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
if [ "${rule}" != "${full_rule}" ]
then
# If so, isolate just '(-S \w)+' substring of that rule
rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
# Check if list of '-S syscall' arguments of that rule is subset
# of '-S syscall' list of expected $full_rule
if grep -q -- "$rule_syscalls" <<< "$full_rule"
then
# Rule is covered (i.e. the list of -S syscalls for this rule is
# subset of -S syscalls of $full_rule => existing rule can be deleted
# Thus delete the rule from audit.rules & our array
sed -i -e "\;${rule};d" "$audit_file"
if [ $? -ne 0 ]
then
retval=1
fi
existing_rules=("${existing_rules[@]//$rule/}")
else
# Rule isn't covered by $full_rule - it besides -S syscall arguments
# for this group contains also -S syscall arguments for other syscall
# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
# since 'lchown' & 'fchownat' share 'chown' substring
# Therefore:
# * 1) delete the original rule from audit.rules
# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
# * 2) delete the -S syscall arguments for this syscall group, but
# keep those not belonging to this syscall group
# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
# * 3) append the modified (filtered) rule again into audit.rules
# if the same rule not already present
#
# 1) Delete the original rule
sed -i -e "\;${rule};d" "$audit_file"
if [ $? -ne 0 ]
then
retval=1
fi
# 2) Delete syscalls for this group, but keep those from other groups
# Convert current rule syscall's string into array splitting by '-S' delimiter
IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
# Reset IFS back to default
unset IFS
# Declare new empty string to hold '-S syscall' arguments from other groups
new_syscalls_for_rule=''
# Walk through existing '-S syscall' arguments
for syscall_arg in "${rule_syscalls_as_array[@]}"
do
# Skip empty $syscall_arg values
if [ "$syscall_arg" == '' ]
then
continue
fi
# If the '-S syscall' doesn't belong to current group add it to the new list
# (together with adding '-S' delimiter back for each of such item found)
if grep -q -v -- "$group" <<< "$syscall_arg"
then
new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
fi
done
# Replace original '-S syscall' list with the new one for this rule
updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
# Squeeze repeated whitespace characters in rule definition (if any) into one
updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
# 3) Append the modified / filtered rule again into audit.rules
# (but only in case it's not present yet to prevent duplicate definitions)
if ! grep -q -- "$updated_rule" "$audit_file"
then
echo "$updated_rule" >> "$audit_file"
fi
fi
else
# $audit_file already contains the expected rule form for this
# architecture & key => don't insert it second time
append_expected_rule=1
fi
done
# We deleted all rules that were subset of the expected one for this arch & key.
# Also isolated rules containing system calls not from this system calls group.
# Now append the expected rule if it's not present in $audit_file yet
if [[ ${append_expected_rule} -eq "0" ]]
then
echo "$full_rule" >> "$audit_file"
fi
done
return $retval
}
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Reboot: | true |
---|
Strategy: | restrict |
---|
#
# What architecture are we on?
#
- name: Set architecture for audit fchmod tasks
set_fact:
audit_arch: "b{{ ansible_architecture | regex_replace('.*(\\d\\d$)','\\1') }}"
#
# Inserts/replaces the rule in /etc/audit/rules.d
#
- name: Search /etc/audit/rules.d for other DAC audit rules
find:
paths: "/etc/audit/rules.d"
recurse: no
contains: "-F key=perm_mod$"
patterns: "*.rules"
register: find_fchmod
- name: If existing DAC ruleset not found, use /etc/audit/rules.d/privileged.rules as the recipient for the rule
set_fact:
all_files:
- /etc/audit/rules.d/privileged.rules
when: find_fchmod.matched == 0
- name: Use matched file as the recipient for the rule
set_fact:
all_files:
- "{{ find_fchmod.files | map(attribute='path') | list | first }}"
when: find_fchmod.matched > 0
- name: Inserts/replaces the fchmod rule in rules.d when on x86
lineinfile:
path: "{{ all_files[0] }}"
line: "-a always,exit -F arch=b32 -S fchmod -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
create: yes
tags:
- audit_rules_dac_modification_fchmod
- low_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27393-8
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030420
- name: Inserts/replaces the fchmod rule in rules.d when on x86_64
lineinfile:
path: "{{ all_files[0] }}"
line: "-a always,exit -F arch=b64 -S fchmod -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
create: yes
when: audit_arch == 'b64'
tags:
- audit_rules_dac_modification_fchmod
- low_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27393-8
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030420
#
# Inserts/replaces the rule in /etc/audit/audit.rules
#
- name: Inserts/replaces the fchmod rule in /etc/audit/audit.rules when on x86
lineinfile:
line: "{{ item }}"
state: present
dest: /etc/audit/audit.rules
with_items:
- "-a always,exit -F arch=b32 -S fchmod -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
tags:
- audit_rules_dac_modification_fchmod
- low_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27393-8
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030420
- name: Inserts/replaces the fchmod rule in audit.rules when on x86_64
lineinfile:
line: "{{ item }}"
state: present
dest: /etc/audit/audit.rules
create: yes
with_items:
- "-a always,exit -F arch=b64 -S fchmod -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
when: audit_arch == 'b64'
tags:
- audit_rules_dac_modification_fchmod
- low_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27393-8
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030420
|
Record Events that Modify the System's Discretionary Access Controls - fchmodat
[ref]ruleAt a minimum, the audit system should collect file permission
changes for all users and root. If the auditd daemon is configured to
use the augenrules program to read audit rules during daemon startup
(the default), add the following line to a file with suffix .rules in
the directory /etc/audit/rules.d :
-a always,exit -F arch=b32 -S fchmodat -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchmodat -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S fchmodat -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchmodat -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
Warning:
Note that these rules can be configured in a
number of ways while still achieving the desired effect. Here the system calls
have been placed independent of other system calls. Grouping these system
calls with others as identifying earlier in this guide is more efficient.
Rationale:The changing of file permissions could indicate that a user is attempting to
gain access to information that would otherwise be disallowed. Auditing DAC modifications
can facilitate the identification of patterns of abuse among both authorized and
unauthorized users. Identifiers:
CCE-27388-8 References:
OL-07-030430, AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, CCI-000126, CCI-000172, Req-10.5.5, 5.2.10, SRG-OS-000064-GPOS-00033, SRG-OS-000392-GPOS-00172, SRG-OS-000458-GPOS-00203, 5.4.1.1, 3.1.7 Remediation Shell script: (show)
# First perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
PATTERN="-a always,exit -F arch=$ARCH -S fchmodat.*"
GROUP="perm_mod"
FULL_RULE="-a always,exit -F arch=$ARCH -S fchmodat -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
# https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool tool used to load audit rules,
# either 'auditctl', or 'augenrules
# * audit rules' pattern audit rule skeleton for same syscall
# * syscall group greatest common string this rule shares
# with other rules from the same group
# * architecture architecture this rule is intended for
# * full form of new rule to add expected full form of audit rule as to be
# added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
# See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {
# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"
# Check sanity of the input
if [ $# -ne "5" ]
then
echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect
retval=0
# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
# Extract audit $key from audit rule so we can use it later
key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
# Check if particular audit rule is already defined
IFS=$'\n' matches=($(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
if [ $? -ne 0 ]
then
retval=1
fi
# Reset IFS back to default
unset IFS
for match in "${matches[@]}"
do
files_to_inspect=("${files_to_inspect[@]}" "${match}")
done
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
files_to_inspect="/etc/audit/rules.d/$key.rules"
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that:
# * follow the rule pattern, and
# * meet the hardware architecture requirement, and
# * are current syscall group specific
IFS=$'\n' existing_rules=($(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d" "$audit_file"))
if [ $? -ne 0 ]
then
retval=1
fi
# Reset IFS back to default
unset IFS
# Process rules found case-by-case
for rule in "${existing_rules[@]}"
do
# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
if [ "${rule}" != "${full_rule}" ]
then
# If so, isolate just '(-S \w)+' substring of that rule
rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
# Check if list of '-S syscall' arguments of that rule is subset
# of '-S syscall' list of expected $full_rule
if grep -q -- "$rule_syscalls" <<< "$full_rule"
then
# Rule is covered (i.e. the list of -S syscalls for this rule is
# subset of -S syscalls of $full_rule => existing rule can be deleted
# Thus delete the rule from audit.rules & our array
sed -i -e "\;${rule};d" "$audit_file"
if [ $? -ne 0 ]
then
retval=1
fi
existing_rules=("${existing_rules[@]//$rule/}")
else
# Rule isn't covered by $full_rule - it besides -S syscall arguments
# for this group contains also -S syscall arguments for other syscall
# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
# since 'lchown' & 'fchownat' share 'chown' substring
# Therefore:
# * 1) delete the original rule from audit.rules
# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
# * 2) delete the -S syscall arguments for this syscall group, but
# keep those not belonging to this syscall group
# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
# * 3) append the modified (filtered) rule again into audit.rules
# if the same rule not already present
#
# 1) Delete the original rule
sed -i -e "\;${rule};d" "$audit_file"
if [ $? -ne 0 ]
then
retval=1
fi
# 2) Delete syscalls for this group, but keep those from other groups
# Convert current rule syscall's string into array splitting by '-S' delimiter
IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
# Reset IFS back to default
unset IFS
# Declare new empty string to hold '-S syscall' arguments from other groups
new_syscalls_for_rule=''
# Walk through existing '-S syscall' arguments
for syscall_arg in "${rule_syscalls_as_array[@]}"
do
# Skip empty $syscall_arg values
if [ "$syscall_arg" == '' ]
then
continue
fi
# If the '-S syscall' doesn't belong to current group add it to the new list
# (together with adding '-S' delimiter back for each of such item found)
if grep -q -v -- "$group" <<< "$syscall_arg"
then
new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
fi
done
# Replace original '-S syscall' list with the new one for this rule
updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
# Squeeze repeated whitespace characters in rule definition (if any) into one
updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
# 3) Append the modified / filtered rule again into audit.rules
# (but only in case it's not present yet to prevent duplicate definitions)
if ! grep -q -- "$updated_rule" "$audit_file"
then
echo "$updated_rule" >> "$audit_file"
fi
fi
else
# $audit_file already contains the expected rule form for this
# architecture & key => don't insert it second time
append_expected_rule=1
fi
done
# We deleted all rules that were subset of the expected one for this arch & key.
# Also isolated rules containing system calls not from this system calls group.
# Now append the expected rule if it's not present in $audit_file yet
if [[ ${append_expected_rule} -eq "0" ]]
then
echo "$full_rule" >> "$audit_file"
fi
done
return $retval
}
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Reboot: | true |
---|
Strategy: | restrict |
---|
#
# What architecture are we on?
#
- name: Set architecture for audit fchmodat tasks
set_fact:
audit_arch: "b{{ ansible_architecture | regex_replace('.*(\\d\\d$)','\\1') }}"
#
# Inserts/replaces the rule in /etc/audit/rules.d
#
- name: Search /etc/audit/rules.d for other DAC audit rules
find:
paths: "/etc/audit/rules.d"
recurse: no
contains: "-F key=perm_mod$"
patterns: "*.rules"
register: find_fchmodat
- name: If existing DAC ruleset not found, use /etc/audit/rules.d/privileged.rules as the recipient for the rule
set_fact:
all_files:
- /etc/audit/rules.d/privileged.rules
when: find_fchmodat.matched == 0
- name: Use matched file as the recipient for the rule
set_fact:
all_files:
- "{{ find_fchmodat.files | map(attribute='path') | list | first }}"
when: find_fchmodat.matched > 0
- name: Inserts/replaces the fchmodat rule in rules.d when on x86
lineinfile:
path: "{{ all_files[0] }}"
line: "-a always,exit -F arch=b32 -S fchmodat -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
create: yes
tags:
- audit_rules_dac_modification_fchmodat
- low_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27388-8
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030430
- name: Inserts/replaces the fchmodat rule in rules.d when on x86_64
lineinfile:
path: "{{ all_files[0] }}"
line: "-a always,exit -F arch=b64 -S fchmodat -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
create: yes
when: audit_arch == 'b64'
tags:
- audit_rules_dac_modification_fchmodat
- low_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27388-8
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030430
#
# Inserts/replaces the rule in /etc/audit/audit.rules
#
- name: Inserts/replaces the fchmodat rule in /etc/audit/audit.rules when on x86
lineinfile:
line: "{{ item }}"
state: present
dest: /etc/audit/audit.rules
with_items:
- "-a always,exit -F arch=b32 -S fchmodat -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
tags:
- audit_rules_dac_modification_fchmodat
- low_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27388-8
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030430
- name: Inserts/replaces the fchmodat rule in audit.rules when on x86_64
lineinfile:
line: "{{ item }}"
state: present
dest: /etc/audit/audit.rules
create: yes
with_items:
- "-a always,exit -F arch=b64 -S fchmodat -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
when: audit_arch == 'b64'
tags:
- audit_rules_dac_modification_fchmodat
- low_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27388-8
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030430
|
Record Events that Modify the System's Discretionary Access Controls - fchown
[ref]ruleAt a minimum, the audit system should collect file permission
changes for all users and root. If the auditd daemon is configured
to use the augenrules program to read audit rules during daemon
startup (the default), add the following line to a file with suffix
.rules in the directory /etc/audit/rules.d :
-a always,exit -F arch=b32 -S fchown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S fchown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
Warning:
Note that these rules can be configured in a
number of ways while still achieving the desired effect. Here the system calls
have been placed independent of other system calls. Grouping these system
calls with others as identifying earlier in this guide is more efficient.
Rationale:The changing of file permissions could indicate that a user is attempting to
gain access to information that would otherwise be disallowed. Auditing DAC modifications
can facilitate the identification of patterns of abuse among both authorized and
unauthorized users. Identifiers:
CCE-27356-5 References:
OL-07-030380, AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, CCI-000126, CCI-000172, Req-10.5.5, 5.2.10, SRG-OS-000064-GPOS-00033, SRG-OS-000392-GPOS-00172, SRG-OS-000458-GPOS-00203, SRG-OS-000474-GPOS-00219, 5.4.1.1, 3.1.7 Remediation Shell script: (show)
# First perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
PATTERN="-a always,exit -F arch=$ARCH -S fchown.*"
GROUP="perm_mod"
FULL_RULE="-a always,exit -F arch=$ARCH -S fchown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
# https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool tool used to load audit rules,
# either 'auditctl', or 'augenrules
# * audit rules' pattern audit rule skeleton for same syscall
# * syscall group greatest common string this rule shares
# with other rules from the same group
# * architecture architecture this rule is intended for
# * full form of new rule to add expected full form of audit rule as to be
# added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
# See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {
# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"
# Check sanity of the input
if [ $# -ne "5" ]
then
echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect
retval=0
# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
# Extract audit $key from audit rule so we can use it later
key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
# Check if particular audit rule is already defined
IFS=$'\n' matches=($(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
if [ $? -ne 0 ]
then
retval=1
fi
# Reset IFS back to default
unset IFS
for match in "${matches[@]}"
do
files_to_inspect=("${files_to_inspect[@]}" "${match}")
done
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
files_to_inspect="/etc/audit/rules.d/$key.rules"
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that:
# * follow the rule pattern, and
# * meet the hardware architecture requirement, and
# * are current syscall group specific
IFS=$'\n' existing_rules=($(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d" "$audit_file"))
if [ $? -ne 0 ]
then
retval=1
fi
# Reset IFS back to default
unset IFS
# Process rules found case-by-case
for rule in "${existing_rules[@]}"
do
# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
if [ "${rule}" != "${full_rule}" ]
then
# If so, isolate just '(-S \w)+' substring of that rule
rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
# Check if list of '-S syscall' arguments of that rule is subset
# of '-S syscall' list of expected $full_rule
if grep -q -- "$rule_syscalls" <<< "$full_rule"
then
# Rule is covered (i.e. the list of -S syscalls for this rule is
# subset of -S syscalls of $full_rule => existing rule can be deleted
# Thus delete the rule from audit.rules & our array
sed -i -e "\;${rule};d" "$audit_file"
if [ $? -ne 0 ]
then
retval=1
fi
existing_rules=("${existing_rules[@]//$rule/}")
else
# Rule isn't covered by $full_rule - it besides -S syscall arguments
# for this group contains also -S syscall arguments for other syscall
# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
# since 'lchown' & 'fchownat' share 'chown' substring
# Therefore:
# * 1) delete the original rule from audit.rules
# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
# * 2) delete the -S syscall arguments for this syscall group, but
# keep those not belonging to this syscall group
# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
# * 3) append the modified (filtered) rule again into audit.rules
# if the same rule not already present
#
# 1) Delete the original rule
sed -i -e "\;${rule};d" "$audit_file"
if [ $? -ne 0 ]
then
retval=1
fi
# 2) Delete syscalls for this group, but keep those from other groups
# Convert current rule syscall's string into array splitting by '-S' delimiter
IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
# Reset IFS back to default
unset IFS
# Declare new empty string to hold '-S syscall' arguments from other groups
new_syscalls_for_rule=''
# Walk through existing '-S syscall' arguments
for syscall_arg in "${rule_syscalls_as_array[@]}"
do
# Skip empty $syscall_arg values
if [ "$syscall_arg" == '' ]
then
continue
fi
# If the '-S syscall' doesn't belong to current group add it to the new list
# (together with adding '-S' delimiter back for each of such item found)
if grep -q -v -- "$group" <<< "$syscall_arg"
then
new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
fi
done
# Replace original '-S syscall' list with the new one for this rule
updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
# Squeeze repeated whitespace characters in rule definition (if any) into one
updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
# 3) Append the modified / filtered rule again into audit.rules
# (but only in case it's not present yet to prevent duplicate definitions)
if ! grep -q -- "$updated_rule" "$audit_file"
then
echo "$updated_rule" >> "$audit_file"
fi
fi
else
# $audit_file already contains the expected rule form for this
# architecture & key => don't insert it second time
append_expected_rule=1
fi
done
# We deleted all rules that were subset of the expected one for this arch & key.
# Also isolated rules containing system calls not from this system calls group.
# Now append the expected rule if it's not present in $audit_file yet
if [[ ${append_expected_rule} -eq "0" ]]
then
echo "$full_rule" >> "$audit_file"
fi
done
return $retval
}
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Reboot: | true |
---|
Strategy: | restrict |
---|
#
# What architecture are we on?
#
- name: Set architecture for audit fchown tasks
set_fact:
audit_arch: "b{{ ansible_architecture | regex_replace('.*(\\d\\d$)','\\1') }}"
#
# Inserts/replaces the rule in /etc/audit/rules.d
#
- name: Search /etc/audit/rules.d for other DAC audit rules
find:
paths: "/etc/audit/rules.d"
recurse: no
contains: "-F key=perm_mod$"
patterns: "*.rules"
register: find_fchown
- name: If existing DAC ruleset not found, use /etc/audit/rules.d/privileged.rules as the recipient for the rule
set_fact:
all_files:
- /etc/audit/rules.d/privileged.rules
when: find_fchown.matched == 0
- name: Use matched file as the recipient for the rule
set_fact:
all_files:
- "{{ find_fchown.files | map(attribute='path') | list | first }}"
when: find_fchown.matched > 0
- name: Inserts/replaces the fchown rule in rules.d when on x86
lineinfile:
path: "{{ all_files[0] }}"
line: "-a always,exit -F arch=b32 -S fchown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
create: yes
tags:
- audit_rules_dac_modification_fchown
- low_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27356-5
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030380
- name: Inserts/replaces the fchown rule in rules.d when on x86_64
lineinfile:
path: "{{ all_files[0] }}"
line: "-a always,exit -F arch=b64 -S fchown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
create: yes
when: audit_arch == 'b64'
tags:
- audit_rules_dac_modification_fchown
- low_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27356-5
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030380
#
# Inserts/replaces the rule in /etc/audit/audit.rules
#
- name: Inserts/replaces the fchown rule in /etc/audit/audit.rules when on x86
lineinfile:
line: "{{ item }}"
state: present
dest: /etc/audit/audit.rules
with_items:
- "-a always,exit -F arch=b32 -S fchown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
tags:
- audit_rules_dac_modification_fchown
- low_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27356-5
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030380
- name: Inserts/replaces the fchown rule in audit.rules when on x86_64
lineinfile:
line: "{{ item }}"
state: present
dest: /etc/audit/audit.rules
create: yes
with_items:
- "-a always,exit -F arch=b64 -S fchown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
when: audit_arch == 'b64'
tags:
- audit_rules_dac_modification_fchown
- low_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27356-5
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030380
|
Record Events that Modify the System's Discretionary Access Controls - fchownat
[ref]ruleAt a minimum, the audit system should collect file permission
changes for all users and root. If the auditd daemon is configured
to use the augenrules program to read audit rules during daemon
startup (the default), add the following line to a file with suffix
.rules in the directory /etc/audit/rules.d :
-a always,exit -F arch=b32 -S fchownat -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchownat -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S fchownat -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchownat -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
Warning:
Note that these rules can be configured in a
number of ways while still achieving the desired effect. Here the system calls
have been placed independent of other system calls. Grouping these system
calls with others as identifying earlier in this guide is more efficient.
Rationale:The changing of file permissions could indicate that a user is attempting to
gain access to information that would otherwise be disallowed. Auditing DAC modifications
can facilitate the identification of patterns of abuse among both authorized and
unauthorized users. Identifiers:
CCE-27387-0 References:
OL-07-030400, AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, CCI-000126, CCI-000172, Req-10.5.5, 5.2.10, SRG-OS-000064-GPOS-00033, SRG-OS-000392-GPOS-00172, SRG-OS-000458-GPOS-00203, SRG-OS-000474-GPOS-00219, 5.4.1.1, 3.1.7 Remediation Shell script: (show)
# First perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
PATTERN="-a always,exit -F arch=$ARCH -S fchownat.*"
GROUP="perm_mod"
FULL_RULE="-a always,exit -F arch=$ARCH -S fchownat -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
# https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool tool used to load audit rules,
# either 'auditctl', or 'augenrules
# * audit rules' pattern audit rule skeleton for same syscall
# * syscall group greatest common string this rule shares
# with other rules from the same group
# * architecture architecture this rule is intended for
# * full form of new rule to add expected full form of audit rule as to be
# added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
# See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {
# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"
# Check sanity of the input
if [ $# -ne "5" ]
then
echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect
retval=0
# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
# Extract audit $key from audit rule so we can use it later
key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
# Check if particular audit rule is already defined
IFS=$'\n' matches=($(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
if [ $? -ne 0 ]
then
retval=1
fi
# Reset IFS back to default
unset IFS
for match in "${matches[@]}"
do
files_to_inspect=("${files_to_inspect[@]}" "${match}")
done
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
files_to_inspect="/etc/audit/rules.d/$key.rules"
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that:
# * follow the rule pattern, and
# * meet the hardware architecture requirement, and
# * are current syscall group specific
IFS=$'\n' existing_rules=($(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d" "$audit_file"))
if [ $? -ne 0 ]
then
retval=1
fi
# Reset IFS back to default
unset IFS
# Process rules found case-by-case
for rule in "${existing_rules[@]}"
do
# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
if [ "${rule}" != "${full_rule}" ]
then
# If so, isolate just '(-S \w)+' substring of that rule
rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
# Check if list of '-S syscall' arguments of that rule is subset
# of '-S syscall' list of expected $full_rule
if grep -q -- "$rule_syscalls" <<< "$full_rule"
then
# Rule is covered (i.e. the list of -S syscalls for this rule is
# subset of -S syscalls of $full_rule => existing rule can be deleted
# Thus delete the rule from audit.rules & our array
sed -i -e "\;${rule};d" "$audit_file"
if [ $? -ne 0 ]
then
retval=1
fi
existing_rules=("${existing_rules[@]//$rule/}")
else
# Rule isn't covered by $full_rule - it besides -S syscall arguments
# for this group contains also -S syscall arguments for other syscall
# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
# since 'lchown' & 'fchownat' share 'chown' substring
# Therefore:
# * 1) delete the original rule from audit.rules
# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
# * 2) delete the -S syscall arguments for this syscall group, but
# keep those not belonging to this syscall group
# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
# * 3) append the modified (filtered) rule again into audit.rules
# if the same rule not already present
#
# 1) Delete the original rule
sed -i -e "\;${rule};d" "$audit_file"
if [ $? -ne 0 ]
then
retval=1
fi
# 2) Delete syscalls for this group, but keep those from other groups
# Convert current rule syscall's string into array splitting by '-S' delimiter
IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
# Reset IFS back to default
unset IFS
# Declare new empty string to hold '-S syscall' arguments from other groups
new_syscalls_for_rule=''
# Walk through existing '-S syscall' arguments
for syscall_arg in "${rule_syscalls_as_array[@]}"
do
# Skip empty $syscall_arg values
if [ "$syscall_arg" == '' ]
then
continue
fi
# If the '-S syscall' doesn't belong to current group add it to the new list
# (together with adding '-S' delimiter back for each of such item found)
if grep -q -v -- "$group" <<< "$syscall_arg"
then
new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
fi
done
# Replace original '-S syscall' list with the new one for this rule
updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
# Squeeze repeated whitespace characters in rule definition (if any) into one
updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
# 3) Append the modified / filtered rule again into audit.rules
# (but only in case it's not present yet to prevent duplicate definitions)
if ! grep -q -- "$updated_rule" "$audit_file"
then
echo "$updated_rule" >> "$audit_file"
fi
fi
else
# $audit_file already contains the expected rule form for this
# architecture & key => don't insert it second time
append_expected_rule=1
fi
done
# We deleted all rules that were subset of the expected one for this arch & key.
# Also isolated rules containing system calls not from this system calls group.
# Now append the expected rule if it's not present in $audit_file yet
if [[ ${append_expected_rule} -eq "0" ]]
then
echo "$full_rule" >> "$audit_file"
fi
done
return $retval
}
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Reboot: | true |
---|
Strategy: | restrict |
---|
#
# What architecture are we on?
#
- name: Set architecture for audit fchownat tasks
set_fact:
audit_arch: "b{{ ansible_architecture | regex_replace('.*(\\d\\d$)','\\1') }}"
#
# Inserts/replaces the rule in /etc/audit/rules.d
#
- name: Search /etc/audit/rules.d for other DAC audit rules
find:
paths: "/etc/audit/rules.d"
recurse: no
contains: "-F key=perm_mod$"
patterns: "*.rules"
register: find_fchownat
- name: If existing DAC ruleset not found, use /etc/audit/rules.d/privileged.rules as the recipient for the rule
set_fact:
all_files:
- /etc/audit/rules.d/privileged.rules
when: find_fchownat.matched == 0
- name: Use matched file as the recipient for the rule
set_fact:
all_files:
- "{{ find_fchownat.files | map(attribute='path') | list | first }}"
when: find_fchownat.matched > 0
- name: Inserts/replaces the fchownat rule in rules.d when on x86
lineinfile:
path: "{{ all_files[0] }}"
line: "-a always,exit -F arch=b32 -S fchownat -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
create: yes
tags:
- audit_rules_dac_modification_fchownat
- low_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27387-0
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030400
- name: Inserts/replaces the fchownat rule in rules.d when on x86_64
lineinfile:
path: "{{ all_files[0] }}"
line: "-a always,exit -F arch=b64 -S fchownat -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
create: yes
when: audit_arch == 'b64'
tags:
- audit_rules_dac_modification_fchownat
- low_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27387-0
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030400
#
# Inserts/replaces the rule in /etc/audit/audit.rules
#
- name: Inserts/replaces the fchownat rule in /etc/audit/audit.rules when on x86
lineinfile:
line: "{{ item }}"
state: present
dest: /etc/audit/audit.rules
with_items:
- "-a always,exit -F arch=b32 -S fchownat -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
tags:
- audit_rules_dac_modification_fchownat
- low_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27387-0
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030400
- name: Inserts/replaces the fchownat rule in audit.rules when on x86_64
lineinfile:
line: "{{ item }}"
state: present
dest: /etc/audit/audit.rules
create: yes
with_items:
- "-a always,exit -F arch=b64 -S fchownat -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
when: audit_arch == 'b64'
tags:
- audit_rules_dac_modification_fchownat
- low_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27387-0
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030400
|
Record Events that Modify the System's Discretionary Access Controls - fremovexattr
[ref]ruleAt a minimum, the audit system should collect file permission
changes for all users and root.
If the auditd daemon is configured
to use the augenrules program to read audit rules during daemon
startup (the default), add the following line to a file with suffix
.rules in the directory /etc/audit/rules.d :
-a always,exit -F arch=b32 -S fremovexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fremovexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S fremovexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fremovexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
Warning:
Note that these rules can be configured in a
number of ways while still achieving the desired effect. Here the system calls
have been placed independent of other system calls. Grouping these system
calls with others as identifying earlier in this guide is more efficient.
Rationale:The changing of file permissions could indicate that a user is attempting to
gain access to information that would otherwise be disallowed. Auditing DAC modifications
can facilitate the identification of patterns of abuse among both authorized and
unauthorized users. Identifiers:
CCE-27353-2 References:
OL-07-030480, AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, CCI-000172, Req-10.5.5, 5.2.10, SRG-OS-000064-GPOS-00033, SRG-OS-000392-GPOS-00172, SRG-OS-000458-GPOS-00203, 5.4.1.1, 3.1.7 Remediation Shell script: (show)
# First perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
PATTERN="-a always,exit -F arch=$ARCH -S fremovexattr.*"
GROUP="perm_mod"
FULL_RULE="-a always,exit -F arch=$ARCH -S fremovexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
# https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool tool used to load audit rules,
# either 'auditctl', or 'augenrules
# * audit rules' pattern audit rule skeleton for same syscall
# * syscall group greatest common string this rule shares
# with other rules from the same group
# * architecture architecture this rule is intended for
# * full form of new rule to add expected full form of audit rule as to be
# added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
# See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {
# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"
# Check sanity of the input
if [ $# -ne "5" ]
then
echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect
retval=0
# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
# Extract audit $key from audit rule so we can use it later
key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
# Check if particular audit rule is already defined
IFS=$'\n' matches=($(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
if [ $? -ne 0 ]
then
retval=1
fi
# Reset IFS back to default
unset IFS
for match in "${matches[@]}"
do
files_to_inspect=("${files_to_inspect[@]}" "${match}")
done
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
files_to_inspect="/etc/audit/rules.d/$key.rules"
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that:
# * follow the rule pattern, and
# * meet the hardware architecture requirement, and
# * are current syscall group specific
IFS=$'\n' existing_rules=($(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d" "$audit_file"))
if [ $? -ne 0 ]
then
retval=1
fi
# Reset IFS back to default
unset IFS
# Process rules found case-by-case
for rule in "${existing_rules[@]}"
do
# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
if [ "${rule}" != "${full_rule}" ]
then
# If so, isolate just '(-S \w)+' substring of that rule
rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
# Check if list of '-S syscall' arguments of that rule is subset
# of '-S syscall' list of expected $full_rule
if grep -q -- "$rule_syscalls" <<< "$full_rule"
then
# Rule is covered (i.e. the list of -S syscalls for this rule is
# subset of -S syscalls of $full_rule => existing rule can be deleted
# Thus delete the rule from audit.rules & our array
sed -i -e "\;${rule};d" "$audit_file"
if [ $? -ne 0 ]
then
retval=1
fi
existing_rules=("${existing_rules[@]//$rule/}")
else
# Rule isn't covered by $full_rule - it besides -S syscall arguments
# for this group contains also -S syscall arguments for other syscall
# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
# since 'lchown' & 'fchownat' share 'chown' substring
# Therefore:
# * 1) delete the original rule from audit.rules
# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
# * 2) delete the -S syscall arguments for this syscall group, but
# keep those not belonging to this syscall group
# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
# * 3) append the modified (filtered) rule again into audit.rules
# if the same rule not already present
#
# 1) Delete the original rule
sed -i -e "\;${rule};d" "$audit_file"
if [ $? -ne 0 ]
then
retval=1
fi
# 2) Delete syscalls for this group, but keep those from other groups
# Convert current rule syscall's string into array splitting by '-S' delimiter
IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
# Reset IFS back to default
unset IFS
# Declare new empty string to hold '-S syscall' arguments from other groups
new_syscalls_for_rule=''
# Walk through existing '-S syscall' arguments
for syscall_arg in "${rule_syscalls_as_array[@]}"
do
# Skip empty $syscall_arg values
if [ "$syscall_arg" == '' ]
then
continue
fi
# If the '-S syscall' doesn't belong to current group add it to the new list
# (together with adding '-S' delimiter back for each of such item found)
if grep -q -v -- "$group" <<< "$syscall_arg"
then
new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
fi
done
# Replace original '-S syscall' list with the new one for this rule
updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
# Squeeze repeated whitespace characters in rule definition (if any) into one
updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
# 3) Append the modified / filtered rule again into audit.rules
# (but only in case it's not present yet to prevent duplicate definitions)
if ! grep -q -- "$updated_rule" "$audit_file"
then
echo "$updated_rule" >> "$audit_file"
fi
fi
else
# $audit_file already contains the expected rule form for this
# architecture & key => don't insert it second time
append_expected_rule=1
fi
done
# We deleted all rules that were subset of the expected one for this arch & key.
# Also isolated rules containing system calls not from this system calls group.
# Now append the expected rule if it's not present in $audit_file yet
if [[ ${append_expected_rule} -eq "0" ]]
then
echo "$full_rule" >> "$audit_file"
fi
done
return $retval
}
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Reboot: | true |
---|
Strategy: | restrict |
---|
#
# What architecture are we on?
#
- name: Set architecture for audit fremovexattr tasks
set_fact:
audit_arch: "b{{ ansible_architecture | regex_replace('.*(\\d\\d$)','\\1') }}"
#
# Inserts/replaces the rule in /etc/audit/rules.d
#
- name: Search /etc/audit/rules.d for other DAC audit rules
find:
paths: "/etc/audit/rules.d"
recurse: no
contains: "-F key=perm_mod$"
patterns: "*.rules"
register: find_fremovexattr
- name: If existing DAC ruleset not found, use /etc/audit/rules.d/privileged.rules as the recipient for the rule
set_fact:
all_files:
- /etc/audit/rules.d/privileged.rules
when: find_fremovexattr.matched == 0
- name: Use matched file as the recipient for the rule
set_fact:
all_files:
- "{{ find_fremovexattr.files | map(attribute='path') | list | first }}"
when: find_fremovexattr.matched > 0
- name: Inserts/replaces the fremovexattr rule in rules.d when on x86
lineinfile:
path: "{{ all_files[0] }}"
line: "-a always,exit -F arch=b32 -S fremovexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
create: yes
tags:
- audit_rules_dac_modification_fremovexattr
- medium_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27353-2
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030480
- name: Inserts/replaces the fremovexattr rule in rules.d when on x86_64
lineinfile:
path: "{{ all_files[0] }}"
line: "-a always,exit -F arch=b64 -S fremovexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
create: yes
when: audit_arch == 'b64'
tags:
- audit_rules_dac_modification_fremovexattr
- medium_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27353-2
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030480
#
# Inserts/replaces the rule in /etc/audit/audit.rules
#
- name: Inserts/replaces the fremovexattr rule in /etc/audit/audit.rules when on x86
lineinfile:
line: "{{ item }}"
state: present
dest: /etc/audit/audit.rules
with_items:
- "-a always,exit -F arch=b32 -S fremovexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
tags:
- audit_rules_dac_modification_fremovexattr
- medium_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27353-2
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030480
- name: Inserts/replaces the fremovexattr rule in audit.rules when on x86_64
lineinfile:
line: "{{ item }}"
state: present
dest: /etc/audit/audit.rules
create: yes
with_items:
- "-a always,exit -F arch=b64 -S fremovexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
when: audit_arch == 'b64'
tags:
- audit_rules_dac_modification_fremovexattr
- medium_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27353-2
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030480
|
Record Events that Modify the System's Discretionary Access Controls - fsetxattr
[ref]ruleAt a minimum, the audit system should collect file permission
changes for all users and root. If the auditd daemon is configured
to use the augenrules program to read audit rules during daemon
startup (the default), add the following line to a file with suffix
.rules in the directory /etc/audit/rules.d :
-a always,exit -F arch=b32 -S fsetxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fsetxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S fsetxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fsetxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
Warning:
Note that these rules can be configured in a
number of ways while still achieving the desired effect. Here the system calls
have been placed independent of other system calls. Grouping these system
calls with others as identifying earlier in this guide is more efficient.
Rationale:The changing of file permissions could indicate that a user is attempting to
gain access to information that would otherwise be disallowed. Auditing DAC modifications
can facilitate the identification of patterns of abuse among both authorized and
unauthorized users. Identifiers:
CCE-27389-6 References:
OL-07-030450, AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, CCI-000126, CCI-000172, Req-10.5.5, 5.2.10, SRG-OS-000064-GPOS-00033, SRG-OS-000392-GPOS-00172, SRG-OS-000458-GPOS-00203, 5.4.1.1, 3.1.7 Remediation Shell script: (show)
# First perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
PATTERN="-a always,exit -F arch=$ARCH -S fsetxattr.*"
GROUP="perm_mod"
FULL_RULE="-a always,exit -F arch=$ARCH -S fsetxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
# https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool tool used to load audit rules,
# either 'auditctl', or 'augenrules
# * audit rules' pattern audit rule skeleton for same syscall
# * syscall group greatest common string this rule shares
# with other rules from the same group
# * architecture architecture this rule is intended for
# * full form of new rule to add expected full form of audit rule as to be
# added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
# See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {
# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"
# Check sanity of the input
if [ $# -ne "5" ]
then
echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect
retval=0
# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
# Extract audit $key from audit rule so we can use it later
key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
# Check if particular audit rule is already defined
IFS=$'\n' matches=($(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
if [ $? -ne 0 ]
then
retval=1
fi
# Reset IFS back to default
unset IFS
for match in "${matches[@]}"
do
files_to_inspect=("${files_to_inspect[@]}" "${match}")
done
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
files_to_inspect="/etc/audit/rules.d/$key.rules"
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that:
# * follow the rule pattern, and
# * meet the hardware architecture requirement, and
# * are current syscall group specific
IFS=$'\n' existing_rules=($(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d" "$audit_file"))
if [ $? -ne 0 ]
then
retval=1
fi
# Reset IFS back to default
unset IFS
# Process rules found case-by-case
for rule in "${existing_rules[@]}"
do
# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
if [ "${rule}" != "${full_rule}" ]
then
# If so, isolate just '(-S \w)+' substring of that rule
rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
# Check if list of '-S syscall' arguments of that rule is subset
# of '-S syscall' list of expected $full_rule
if grep -q -- "$rule_syscalls" <<< "$full_rule"
then
# Rule is covered (i.e. the list of -S syscalls for this rule is
# subset of -S syscalls of $full_rule => existing rule can be deleted
# Thus delete the rule from audit.rules & our array
sed -i -e "\;${rule};d" "$audit_file"
if [ $? -ne 0 ]
then
retval=1
fi
existing_rules=("${existing_rules[@]//$rule/}")
else
# Rule isn't covered by $full_rule - it besides -S syscall arguments
# for this group contains also -S syscall arguments for other syscall
# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
# since 'lchown' & 'fchownat' share 'chown' substring
# Therefore:
# * 1) delete the original rule from audit.rules
# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
# * 2) delete the -S syscall arguments for this syscall group, but
# keep those not belonging to this syscall group
# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
# * 3) append the modified (filtered) rule again into audit.rules
# if the same rule not already present
#
# 1) Delete the original rule
sed -i -e "\;${rule};d" "$audit_file"
if [ $? -ne 0 ]
then
retval=1
fi
# 2) Delete syscalls for this group, but keep those from other groups
# Convert current rule syscall's string into array splitting by '-S' delimiter
IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
# Reset IFS back to default
unset IFS
# Declare new empty string to hold '-S syscall' arguments from other groups
new_syscalls_for_rule=''
# Walk through existing '-S syscall' arguments
for syscall_arg in "${rule_syscalls_as_array[@]}"
do
# Skip empty $syscall_arg values
if [ "$syscall_arg" == '' ]
then
continue
fi
# If the '-S syscall' doesn't belong to current group add it to the new list
# (together with adding '-S' delimiter back for each of such item found)
if grep -q -v -- "$group" <<< "$syscall_arg"
then
new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
fi
done
# Replace original '-S syscall' list with the new one for this rule
updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
# Squeeze repeated whitespace characters in rule definition (if any) into one
updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
# 3) Append the modified / filtered rule again into audit.rules
# (but only in case it's not present yet to prevent duplicate definitions)
if ! grep -q -- "$updated_rule" "$audit_file"
then
echo "$updated_rule" >> "$audit_file"
fi
fi
else
# $audit_file already contains the expected rule form for this
# architecture & key => don't insert it second time
append_expected_rule=1
fi
done
# We deleted all rules that were subset of the expected one for this arch & key.
# Also isolated rules containing system calls not from this system calls group.
# Now append the expected rule if it's not present in $audit_file yet
if [[ ${append_expected_rule} -eq "0" ]]
then
echo "$full_rule" >> "$audit_file"
fi
done
return $retval
}
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Reboot: | true |
---|
Strategy: | restrict |
---|
#
# What architecture are we on?
#
- name: Set architecture for audit fsetxattr tasks
set_fact:
audit_arch: "b{{ ansible_architecture | regex_replace('.*(\\d\\d$)','\\1') }}"
#
# Inserts/replaces the rule in /etc/audit/rules.d
#
- name: Search /etc/audit/rules.d for other DAC audit rules
find:
paths: "/etc/audit/rules.d"
recurse: no
contains: "-F key=perm_mod$"
patterns: "*.rules"
register: find_fsetxattr
- name: If existing DAC ruleset not found, use /etc/audit/rules.d/privileged.rules as the recipient for the rule
set_fact:
all_files:
- /etc/audit/rules.d/privileged.rules
when: find_fsetxattr.matched == 0
- name: Use matched file as the recipient for the rule
set_fact:
all_files:
- "{{ find_fsetxattr.files | map(attribute='path') | list | first }}"
when: find_fsetxattr.matched > 0
- name: Inserts/replaces the fsetxattr rule in rules.d when on x86
lineinfile:
path: "{{ all_files[0] }}"
line: "-a always,exit -F arch=b32 -S fsetxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
create: yes
tags:
- audit_rules_dac_modification_fsetxattr
- low_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27389-6
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030450
- name: Inserts/replaces the fsetxattr rule in rules.d when on x86_64
lineinfile:
path: "{{ all_files[0] }}"
line: "-a always,exit -F arch=b64 -S fsetxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
create: yes
when: audit_arch == 'b64'
tags:
- audit_rules_dac_modification_fsetxattr
- low_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27389-6
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030450
#
# Inserts/replaces the rule in /etc/audit/audit.rules
#
- name: Inserts/replaces the fsetxattr rule in /etc/audit/audit.rules when on x86
lineinfile:
line: "{{ item }}"
state: present
dest: /etc/audit/audit.rules
with_items:
- "-a always,exit -F arch=b32 -S fsetxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
tags:
- audit_rules_dac_modification_fsetxattr
- low_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27389-6
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030450
- name: Inserts/replaces the fsetxattr rule in audit.rules when on x86_64
lineinfile:
line: "{{ item }}"
state: present
dest: /etc/audit/audit.rules
create: yes
with_items:
- "-a always,exit -F arch=b64 -S fsetxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
when: audit_arch == 'b64'
tags:
- audit_rules_dac_modification_fsetxattr
- low_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27389-6
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030450
|
Record Events that Modify the System's Discretionary Access Controls - lchown
[ref]ruleAt a minimum, the audit system should collect file permission
changes for all users and root. If the auditd daemon is configured
to use the augenrules program to read audit rules during daemon
startup (the default), add the following line to a file with suffix
.rules in the directory /etc/audit/rules.d :
-a always,exit -F arch=b32 -S lchown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S lchown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S lchown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S lchown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
Warning:
Note that these rules can be configured in a
number of ways while still achieving the desired effect. Here the system calls
have been placed independent of other system calls. Grouping these system
calls with others as identifying earlier in this guide is more efficient.
Rationale:The changing of file permissions could indicate that a user is attempting to
gain access to information that would otherwise be disallowed. Auditing DAC modifications
can facilitate the identification of patterns of abuse among both authorized and
unauthorized users. Identifiers:
CCE-27083-5 References:
OL-07-030390, AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, CCI-000126, CCI-000172, Req-10.5.5, 5.2.10, SRG-OS-000064-GPOS-00033, SRG-OS-000392-GPOS-00172, SRG-OS-000458-GPOS-00203, SRG-OS-000474-GPOS-00219, 5.4.1.1, 3.1.7 Remediation Shell script: (show)
# First perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
PATTERN="-a always,exit -F arch=$ARCH -S lchown.*"
GROUP="perm_mod"
FULL_RULE="-a always,exit -F arch=$ARCH -S lchown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
# https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool tool used to load audit rules,
# either 'auditctl', or 'augenrules
# * audit rules' pattern audit rule skeleton for same syscall
# * syscall group greatest common string this rule shares
# with other rules from the same group
# * architecture architecture this rule is intended for
# * full form of new rule to add expected full form of audit rule as to be
# added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
# See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {
# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"
# Check sanity of the input
if [ $# -ne "5" ]
then
echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect
retval=0
# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
# Extract audit $key from audit rule so we can use it later
key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
# Check if particular audit rule is already defined
IFS=$'\n' matches=($(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
if [ $? -ne 0 ]
then
retval=1
fi
# Reset IFS back to default
unset IFS
for match in "${matches[@]}"
do
files_to_inspect=("${files_to_inspect[@]}" "${match}")
done
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
files_to_inspect="/etc/audit/rules.d/$key.rules"
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that:
# * follow the rule pattern, and
# * meet the hardware architecture requirement, and
# * are current syscall group specific
IFS=$'\n' existing_rules=($(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d" "$audit_file"))
if [ $? -ne 0 ]
then
retval=1
fi
# Reset IFS back to default
unset IFS
# Process rules found case-by-case
for rule in "${existing_rules[@]}"
do
# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
if [ "${rule}" != "${full_rule}" ]
then
# If so, isolate just '(-S \w)+' substring of that rule
rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
# Check if list of '-S syscall' arguments of that rule is subset
# of '-S syscall' list of expected $full_rule
if grep -q -- "$rule_syscalls" <<< "$full_rule"
then
# Rule is covered (i.e. the list of -S syscalls for this rule is
# subset of -S syscalls of $full_rule => existing rule can be deleted
# Thus delete the rule from audit.rules & our array
sed -i -e "\;${rule};d" "$audit_file"
if [ $? -ne 0 ]
then
retval=1
fi
existing_rules=("${existing_rules[@]//$rule/}")
else
# Rule isn't covered by $full_rule - it besides -S syscall arguments
# for this group contains also -S syscall arguments for other syscall
# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
# since 'lchown' & 'fchownat' share 'chown' substring
# Therefore:
# * 1) delete the original rule from audit.rules
# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
# * 2) delete the -S syscall arguments for this syscall group, but
# keep those not belonging to this syscall group
# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
# * 3) append the modified (filtered) rule again into audit.rules
# if the same rule not already present
#
# 1) Delete the original rule
sed -i -e "\;${rule};d" "$audit_file"
if [ $? -ne 0 ]
then
retval=1
fi
# 2) Delete syscalls for this group, but keep those from other groups
# Convert current rule syscall's string into array splitting by '-S' delimiter
IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
# Reset IFS back to default
unset IFS
# Declare new empty string to hold '-S syscall' arguments from other groups
new_syscalls_for_rule=''
# Walk through existing '-S syscall' arguments
for syscall_arg in "${rule_syscalls_as_array[@]}"
do
# Skip empty $syscall_arg values
if [ "$syscall_arg" == '' ]
then
continue
fi
# If the '-S syscall' doesn't belong to current group add it to the new list
# (together with adding '-S' delimiter back for each of such item found)
if grep -q -v -- "$group" <<< "$syscall_arg"
then
new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
fi
done
# Replace original '-S syscall' list with the new one for this rule
updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
# Squeeze repeated whitespace characters in rule definition (if any) into one
updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
# 3) Append the modified / filtered rule again into audit.rules
# (but only in case it's not present yet to prevent duplicate definitions)
if ! grep -q -- "$updated_rule" "$audit_file"
then
echo "$updated_rule" >> "$audit_file"
fi
fi
else
# $audit_file already contains the expected rule form for this
# architecture & key => don't insert it second time
append_expected_rule=1
fi
done
# We deleted all rules that were subset of the expected one for this arch & key.
# Also isolated rules containing system calls not from this system calls group.
# Now append the expected rule if it's not present in $audit_file yet
if [[ ${append_expected_rule} -eq "0" ]]
then
echo "$full_rule" >> "$audit_file"
fi
done
return $retval
}
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Reboot: | true |
---|
Strategy: | restrict |
---|
#
# What architecture are we on?
#
- name: Set architecture for audit lchown tasks
set_fact:
audit_arch: "b{{ ansible_architecture | regex_replace('.*(\\d\\d$)','\\1') }}"
#
# Inserts/replaces the rule in /etc/audit/rules.d
#
- name: Search /etc/audit/rules.d for other DAC audit rules
find:
paths: "/etc/audit/rules.d"
recurse: no
contains: "-F key=perm_mod$"
patterns: "*.rules"
register: find_lchown
- name: If existing DAC ruleset not found, use /etc/audit/rules.d/privileged.rules as the recipient for the rule
set_fact:
all_files:
- /etc/audit/rules.d/privileged.rules
when: find_lchown.matched == 0
- name: Use matched file as the recipient for the rule
set_fact:
all_files:
- "{{ find_lchown.files | map(attribute='path') | list | first }}"
when: find_lchown.matched > 0
- name: Inserts/replaces the lchown rule in rules.d when on x86
lineinfile:
path: "{{ all_files[0] }}"
line: "-a always,exit -F arch=b32 -S lchown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
create: yes
tags:
- audit_rules_dac_modification_lchown
- low_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27083-5
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030390
- name: Inserts/replaces the lchown rule in rules.d when on x86_64
lineinfile:
path: "{{ all_files[0] }}"
line: "-a always,exit -F arch=b64 -S lchown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
create: yes
when: audit_arch == 'b64'
tags:
- audit_rules_dac_modification_lchown
- low_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27083-5
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030390
#
# Inserts/replaces the rule in /etc/audit/audit.rules
#
- name: Inserts/replaces the lchown rule in /etc/audit/audit.rules when on x86
lineinfile:
line: "{{ item }}"
state: present
dest: /etc/audit/audit.rules
with_items:
- "-a always,exit -F arch=b32 -S lchown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
tags:
- audit_rules_dac_modification_lchown
- low_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27083-5
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030390
- name: Inserts/replaces the lchown rule in audit.rules when on x86_64
lineinfile:
line: "{{ item }}"
state: present
dest: /etc/audit/audit.rules
create: yes
with_items:
- "-a always,exit -F arch=b64 -S lchown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
when: audit_arch == 'b64'
tags:
- audit_rules_dac_modification_lchown
- low_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27083-5
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030390
|
Record Events that Modify the System's Discretionary Access Controls - lremovexattr
[ref]ruleAt a minimum, the audit system should collect file permission
changes for all users and root.
If the auditd daemon is configured
to use the augenrules program to read audit rules during daemon
startup (the default), add the following line to a file with suffix
.rules in the directory /etc/audit/rules.d :
-a always,exit -F arch=b32 -S lremovexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S lremovexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S lremovexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S lremovexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
Warning:
Note that these rules can be configured in a
number of ways while still achieving the desired effect. Here the system calls
have been placed independent of other system calls. Grouping these system
calls with others as identifying earlier in this guide is more efficient.
Rationale:The changing of file permissions could indicate that a user is attempting to
gain access to information that would otherwise be disallowed. Auditing DAC modifications
can facilitate the identification of patterns of abuse among both authorized and
unauthorized users. Identifiers:
CCE-27410-0 References:
OL-07-030490, AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, CCI-000172, Req-10.5.5, 5.2.10, SRG-OS-000064-GPOS-00033, SRG-OS-000392-GPOS-00172, SRG-OS-000458-GPOS-00203, 5.4.1.1, 3.1.7 Remediation Shell script: (show)
# First perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
PATTERN="-a always,exit -F arch=$ARCH -S lremovexattr.*"
GROUP="perm_mod"
FULL_RULE="-a always,exit -F arch=$ARCH -S lremovexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
# https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool tool used to load audit rules,
# either 'auditctl', or 'augenrules
# * audit rules' pattern audit rule skeleton for same syscall
# * syscall group greatest common string this rule shares
# with other rules from the same group
# * architecture architecture this rule is intended for
# * full form of new rule to add expected full form of audit rule as to be
# added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
# See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {
# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"
# Check sanity of the input
if [ $# -ne "5" ]
then
echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect
retval=0
# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
# Extract audit $key from audit rule so we can use it later
key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
# Check if particular audit rule is already defined
IFS=$'\n' matches=($(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
if [ $? -ne 0 ]
then
retval=1
fi
# Reset IFS back to default
unset IFS
for match in "${matches[@]}"
do
files_to_inspect=("${files_to_inspect[@]}" "${match}")
done
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
files_to_inspect="/etc/audit/rules.d/$key.rules"
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that:
# * follow the rule pattern, and
# * meet the hardware architecture requirement, and
# * are current syscall group specific
IFS=$'\n' existing_rules=($(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d" "$audit_file"))
if [ $? -ne 0 ]
then
retval=1
fi
# Reset IFS back to default
unset IFS
# Process rules found case-by-case
for rule in "${existing_rules[@]}"
do
# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
if [ "${rule}" != "${full_rule}" ]
then
# If so, isolate just '(-S \w)+' substring of that rule
rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
# Check if list of '-S syscall' arguments of that rule is subset
# of '-S syscall' list of expected $full_rule
if grep -q -- "$rule_syscalls" <<< "$full_rule"
then
# Rule is covered (i.e. the list of -S syscalls for this rule is
# subset of -S syscalls of $full_rule => existing rule can be deleted
# Thus delete the rule from audit.rules & our array
sed -i -e "\;${rule};d" "$audit_file"
if [ $? -ne 0 ]
then
retval=1
fi
existing_rules=("${existing_rules[@]//$rule/}")
else
# Rule isn't covered by $full_rule - it besides -S syscall arguments
# for this group contains also -S syscall arguments for other syscall
# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
# since 'lchown' & 'fchownat' share 'chown' substring
# Therefore:
# * 1) delete the original rule from audit.rules
# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
# * 2) delete the -S syscall arguments for this syscall group, but
# keep those not belonging to this syscall group
# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
# * 3) append the modified (filtered) rule again into audit.rules
# if the same rule not already present
#
# 1) Delete the original rule
sed -i -e "\;${rule};d" "$audit_file"
if [ $? -ne 0 ]
then
retval=1
fi
# 2) Delete syscalls for this group, but keep those from other groups
# Convert current rule syscall's string into array splitting by '-S' delimiter
IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
# Reset IFS back to default
unset IFS
# Declare new empty string to hold '-S syscall' arguments from other groups
new_syscalls_for_rule=''
# Walk through existing '-S syscall' arguments
for syscall_arg in "${rule_syscalls_as_array[@]}"
do
# Skip empty $syscall_arg values
if [ "$syscall_arg" == '' ]
then
continue
fi
# If the '-S syscall' doesn't belong to current group add it to the new list
# (together with adding '-S' delimiter back for each of such item found)
if grep -q -v -- "$group" <<< "$syscall_arg"
then
new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
fi
done
# Replace original '-S syscall' list with the new one for this rule
updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
# Squeeze repeated whitespace characters in rule definition (if any) into one
updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
# 3) Append the modified / filtered rule again into audit.rules
# (but only in case it's not present yet to prevent duplicate definitions)
if ! grep -q -- "$updated_rule" "$audit_file"
then
echo "$updated_rule" >> "$audit_file"
fi
fi
else
# $audit_file already contains the expected rule form for this
# architecture & key => don't insert it second time
append_expected_rule=1
fi
done
# We deleted all rules that were subset of the expected one for this arch & key.
# Also isolated rules containing system calls not from this system calls group.
# Now append the expected rule if it's not present in $audit_file yet
if [[ ${append_expected_rule} -eq "0" ]]
then
echo "$full_rule" >> "$audit_file"
fi
done
return $retval
}
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Reboot: | true |
---|
Strategy: | restrict |
---|
#
# What architecture are we on?
#
- name: Set architecture for audit lremovexattr tasks
set_fact:
audit_arch: "b{{ ansible_architecture | regex_replace('.*(\\d\\d$)','\\1') }}"
#
# Inserts/replaces the rule in /etc/audit/rules.d
#
- name: Search /etc/audit/rules.d for other DAC audit rules
find:
paths: "/etc/audit/rules.d"
recurse: no
contains: "-F key=perm_mod$"
patterns: "*.rules"
register: find_lremovexattr
- name: If existing DAC ruleset not found, use /etc/audit/rules.d/privileged.rules as the recipient for the rule
set_fact:
all_files:
- /etc/audit/rules.d/privileged.rules
when: find_lremovexattr.matched == 0
- name: Use matched file as the recipient for the rule
set_fact:
all_files:
- "{{ find_lremovexattr.files | map(attribute='path') | list | first }}"
when: find_lremovexattr.matched > 0
- name: Inserts/replaces the lremovexattr rule in rules.d when on x86
lineinfile:
path: "{{ all_files[0] }}"
line: "-a always,exit -F arch=b32 -S lremovexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
create: yes
tags:
- audit_rules_dac_modification_lremovexattr
- medium_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27410-0
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030490
- name: Inserts/replaces the lremovexattr rule in rules.d when on x86_64
lineinfile:
path: "{{ all_files[0] }}"
line: "-a always,exit -F arch=b64 -S lremovexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
create: yes
when: audit_arch == 'b64'
tags:
- audit_rules_dac_modification_lremovexattr
- medium_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27410-0
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030490
#
# Inserts/replaces the rule in /etc/audit/audit.rules
#
- name: Inserts/replaces the lremovexattr rule in /etc/audit/audit.rules when on x86
lineinfile:
line: "{{ item }}"
state: present
dest: /etc/audit/audit.rules
with_items:
- "-a always,exit -F arch=b32 -S lremovexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
tags:
- audit_rules_dac_modification_lremovexattr
- medium_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27410-0
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030490
- name: Inserts/replaces the lremovexattr rule in audit.rules when on x86_64
lineinfile:
line: "{{ item }}"
state: present
dest: /etc/audit/audit.rules
create: yes
with_items:
- "-a always,exit -F arch=b64 -S lremovexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
when: audit_arch == 'b64'
tags:
- audit_rules_dac_modification_lremovexattr
- medium_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27410-0
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030490
|
Record Events that Modify the System's Discretionary Access Controls - lsetxattr
[ref]ruleAt a minimum, the audit system should collect file permission
changes for all users and root. If the auditd daemon is configured
to use the augenrules program to read audit rules during daemon
startup (the default), add the following line to a file with suffix
.rules in the directory /etc/audit/rules.d :
-a always,exit -F arch=b32 -S lsetxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S lsetxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S lsetxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S lsetxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
Warning:
Note that these rules can be configured in a
number of ways while still achieving the desired effect. Here the system calls
have been placed independent of other system calls. Grouping these system
calls with others as identifying earlier in this guide is more efficient.
Rationale:The changing of file permissions could indicate that a user is attempting to
gain access to information that would otherwise be disallowed. Auditing DAC modifications
can facilitate the identification of patterns of abuse among both authorized and
unauthorized users. Identifiers:
CCE-27280-7 References:
OL-07-030460, AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, CCI-000126, CCI-000172, Req-10.5.5, 5.2.10, SRG-OS-000064-GPOS-00033, SRG-OS-000392-GPOS-00172, SRG-OS-000458-GPOS-00203, SRG-OS-000474-GPOS-00219, 5.4.1.1, 3.1.7 Remediation Shell script: (show)
# First perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
PATTERN="-a always,exit -F arch=$ARCH -S lsetxattr.*"
GROUP="perm_mod"
FULL_RULE="-a always,exit -F arch=$ARCH -S lsetxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
# https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool tool used to load audit rules,
# either 'auditctl', or 'augenrules
# * audit rules' pattern audit rule skeleton for same syscall
# * syscall group greatest common string this rule shares
# with other rules from the same group
# * architecture architecture this rule is intended for
# * full form of new rule to add expected full form of audit rule as to be
# added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
# See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {
# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"
# Check sanity of the input
if [ $# -ne "5" ]
then
echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect
retval=0
# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
# Extract audit $key from audit rule so we can use it later
key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
# Check if particular audit rule is already defined
IFS=$'\n' matches=($(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
if [ $? -ne 0 ]
then
retval=1
fi
# Reset IFS back to default
unset IFS
for match in "${matches[@]}"
do
files_to_inspect=("${files_to_inspect[@]}" "${match}")
done
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
files_to_inspect="/etc/audit/rules.d/$key.rules"
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that:
# * follow the rule pattern, and
# * meet the hardware architecture requirement, and
# * are current syscall group specific
IFS=$'\n' existing_rules=($(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d" "$audit_file"))
if [ $? -ne 0 ]
then
retval=1
fi
# Reset IFS back to default
unset IFS
# Process rules found case-by-case
for rule in "${existing_rules[@]}"
do
# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
if [ "${rule}" != "${full_rule}" ]
then
# If so, isolate just '(-S \w)+' substring of that rule
rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
# Check if list of '-S syscall' arguments of that rule is subset
# of '-S syscall' list of expected $full_rule
if grep -q -- "$rule_syscalls" <<< "$full_rule"
then
# Rule is covered (i.e. the list of -S syscalls for this rule is
# subset of -S syscalls of $full_rule => existing rule can be deleted
# Thus delete the rule from audit.rules & our array
sed -i -e "\;${rule};d" "$audit_file"
if [ $? -ne 0 ]
then
retval=1
fi
existing_rules=("${existing_rules[@]//$rule/}")
else
# Rule isn't covered by $full_rule - it besides -S syscall arguments
# for this group contains also -S syscall arguments for other syscall
# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
# since 'lchown' & 'fchownat' share 'chown' substring
# Therefore:
# * 1) delete the original rule from audit.rules
# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
# * 2) delete the -S syscall arguments for this syscall group, but
# keep those not belonging to this syscall group
# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
# * 3) append the modified (filtered) rule again into audit.rules
# if the same rule not already present
#
# 1) Delete the original rule
sed -i -e "\;${rule};d" "$audit_file"
if [ $? -ne 0 ]
then
retval=1
fi
# 2) Delete syscalls for this group, but keep those from other groups
# Convert current rule syscall's string into array splitting by '-S' delimiter
IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
# Reset IFS back to default
unset IFS
# Declare new empty string to hold '-S syscall' arguments from other groups
new_syscalls_for_rule=''
# Walk through existing '-S syscall' arguments
for syscall_arg in "${rule_syscalls_as_array[@]}"
do
# Skip empty $syscall_arg values
if [ "$syscall_arg" == '' ]
then
continue
fi
# If the '-S syscall' doesn't belong to current group add it to the new list
# (together with adding '-S' delimiter back for each of such item found)
if grep -q -v -- "$group" <<< "$syscall_arg"
then
new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
fi
done
# Replace original '-S syscall' list with the new one for this rule
updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
# Squeeze repeated whitespace characters in rule definition (if any) into one
updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
# 3) Append the modified / filtered rule again into audit.rules
# (but only in case it's not present yet to prevent duplicate definitions)
if ! grep -q -- "$updated_rule" "$audit_file"
then
echo "$updated_rule" >> "$audit_file"
fi
fi
else
# $audit_file already contains the expected rule form for this
# architecture & key => don't insert it second time
append_expected_rule=1
fi
done
# We deleted all rules that were subset of the expected one for this arch & key.
# Also isolated rules containing system calls not from this system calls group.
# Now append the expected rule if it's not present in $audit_file yet
if [[ ${append_expected_rule} -eq "0" ]]
then
echo "$full_rule" >> "$audit_file"
fi
done
return $retval
}
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Reboot: | true |
---|
Strategy: | restrict |
---|
#
# What architecture are we on?
#
- name: Set architecture for audit lsetxattr tasks
set_fact:
audit_arch: "b{{ ansible_architecture | regex_replace('.*(\\d\\d$)','\\1') }}"
#
# Inserts/replaces the rule in /etc/audit/rules.d
#
- name: Search /etc/audit/rules.d for other DAC audit rules
find:
paths: "/etc/audit/rules.d"
recurse: no
contains: "-F key=perm_mod$"
patterns: "*.rules"
register: find_lsetxattr
- name: If existing DAC ruleset not found, use /etc/audit/rules.d/privileged.rules as the recipient for the rule
set_fact:
all_files:
- /etc/audit/rules.d/privileged.rules
when: find_lsetxattr.matched == 0
- name: Use matched file as the recipient for the rule
set_fact:
all_files:
- "{{ find_lsetxattr.files | map(attribute='path') | list | first }}"
when: find_lsetxattr.matched > 0
- name: Inserts/replaces the lsetxattr rule in rules.d when on x86
lineinfile:
path: "{{ all_files[0] }}"
line: "-a always,exit -F arch=b32 -S lsetxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
create: yes
tags:
- audit_rules_dac_modification_lsetxattr
- low_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27280-7
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030460
- name: Inserts/replaces the lsetxattr rule in rules.d when on x86_64
lineinfile:
path: "{{ all_files[0] }}"
line: "-a always,exit -F arch=b64 -S lsetxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
create: yes
when: audit_arch == 'b64'
tags:
- audit_rules_dac_modification_lsetxattr
- low_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27280-7
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030460
#
# Inserts/replaces the rule in /etc/audit/audit.rules
#
- name: Inserts/replaces the lsetxattr rule in /etc/audit/audit.rules when on x86
lineinfile:
line: "{{ item }}"
state: present
dest: /etc/audit/audit.rules
with_items:
- "-a always,exit -F arch=b32 -S lsetxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
tags:
- audit_rules_dac_modification_lsetxattr
- low_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27280-7
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030460
- name: Inserts/replaces the lsetxattr rule in audit.rules when on x86_64
lineinfile:
line: "{{ item }}"
state: present
dest: /etc/audit/audit.rules
create: yes
with_items:
- "-a always,exit -F arch=b64 -S lsetxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
when: audit_arch == 'b64'
tags:
- audit_rules_dac_modification_lsetxattr
- low_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27280-7
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030460
|
Record Events that Modify the System's Discretionary Access Controls - removexattr
[ref]ruleAt a minimum, the audit system should collect file permission
changes for all users and root.
If the auditd daemon is configured to use the augenrules
program to read audit rules during daemon startup (the default), add the
following line to a file with suffix .rules in the directory /etc/audit/rules.d :
-a always,exit -F arch=b32 -S removexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S removexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S removexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S removexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
Warning:
Note that these rules can be configured in a
number of ways while still achieving the desired effect. Here the system calls
have been placed independent of other system calls. Grouping these system
calls with others as identifying earlier in this guide is more efficient.
Rationale:The changing of file permissions could indicate that a user is attempting to
gain access to information that would otherwise be disallowed. Auditing DAC modifications
can facilitate the identification of patterns of abuse among both authorized and
unauthorized users. Identifiers:
CCE-27367-2 References:
OL-07-030470, AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, CCI-000172, Req-10.5.5, 5.2.10, SRG-OS-000064-GPOS-00033, SRG-OS-000392-GPOS-00172, SRG-OS-000458-GPOS-00203, 5.4.1.1, 3.1.7 Remediation Shell script: (show)
# First perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
PATTERN="-a always,exit -F arch=$ARCH -S removexattr.*"
GROUP="perm_mod"
FULL_RULE="-a always,exit -F arch=$ARCH -S removexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
# https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool tool used to load audit rules,
# either 'auditctl', or 'augenrules
# * audit rules' pattern audit rule skeleton for same syscall
# * syscall group greatest common string this rule shares
# with other rules from the same group
# * architecture architecture this rule is intended for
# * full form of new rule to add expected full form of audit rule as to be
# added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
# See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {
# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"
# Check sanity of the input
if [ $# -ne "5" ]
then
echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect
retval=0
# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
# Extract audit $key from audit rule so we can use it later
key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
# Check if particular audit rule is already defined
IFS=$'\n' matches=($(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
if [ $? -ne 0 ]
then
retval=1
fi
# Reset IFS back to default
unset IFS
for match in "${matches[@]}"
do
files_to_inspect=("${files_to_inspect[@]}" "${match}")
done
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
files_to_inspect="/etc/audit/rules.d/$key.rules"
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that:
# * follow the rule pattern, and
# * meet the hardware architecture requirement, and
# * are current syscall group specific
IFS=$'\n' existing_rules=($(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d" "$audit_file"))
if [ $? -ne 0 ]
then
retval=1
fi
# Reset IFS back to default
unset IFS
# Process rules found case-by-case
for rule in "${existing_rules[@]}"
do
# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
if [ "${rule}" != "${full_rule}" ]
then
# If so, isolate just '(-S \w)+' substring of that rule
rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
# Check if list of '-S syscall' arguments of that rule is subset
# of '-S syscall' list of expected $full_rule
if grep -q -- "$rule_syscalls" <<< "$full_rule"
then
# Rule is covered (i.e. the list of -S syscalls for this rule is
# subset of -S syscalls of $full_rule => existing rule can be deleted
# Thus delete the rule from audit.rules & our array
sed -i -e "\;${rule};d" "$audit_file"
if [ $? -ne 0 ]
then
retval=1
fi
existing_rules=("${existing_rules[@]//$rule/}")
else
# Rule isn't covered by $full_rule - it besides -S syscall arguments
# for this group contains also -S syscall arguments for other syscall
# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
# since 'lchown' & 'fchownat' share 'chown' substring
# Therefore:
# * 1) delete the original rule from audit.rules
# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
# * 2) delete the -S syscall arguments for this syscall group, but
# keep those not belonging to this syscall group
# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
# * 3) append the modified (filtered) rule again into audit.rules
# if the same rule not already present
#
# 1) Delete the original rule
sed -i -e "\;${rule};d" "$audit_file"
if [ $? -ne 0 ]
then
retval=1
fi
# 2) Delete syscalls for this group, but keep those from other groups
# Convert current rule syscall's string into array splitting by '-S' delimiter
IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
# Reset IFS back to default
unset IFS
# Declare new empty string to hold '-S syscall' arguments from other groups
new_syscalls_for_rule=''
# Walk through existing '-S syscall' arguments
for syscall_arg in "${rule_syscalls_as_array[@]}"
do
# Skip empty $syscall_arg values
if [ "$syscall_arg" == '' ]
then
continue
fi
# If the '-S syscall' doesn't belong to current group add it to the new list
# (together with adding '-S' delimiter back for each of such item found)
if grep -q -v -- "$group" <<< "$syscall_arg"
then
new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
fi
done
# Replace original '-S syscall' list with the new one for this rule
updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
# Squeeze repeated whitespace characters in rule definition (if any) into one
updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
# 3) Append the modified / filtered rule again into audit.rules
# (but only in case it's not present yet to prevent duplicate definitions)
if ! grep -q -- "$updated_rule" "$audit_file"
then
echo "$updated_rule" >> "$audit_file"
fi
fi
else
# $audit_file already contains the expected rule form for this
# architecture & key => don't insert it second time
append_expected_rule=1
fi
done
# We deleted all rules that were subset of the expected one for this arch & key.
# Also isolated rules containing system calls not from this system calls group.
# Now append the expected rule if it's not present in $audit_file yet
if [[ ${append_expected_rule} -eq "0" ]]
then
echo "$full_rule" >> "$audit_file"
fi
done
return $retval
}
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Reboot: | true |
---|
Strategy: | restrict |
---|
#
# What architecture are we on?
#
- name: Set architecture for audit removexattr tasks
set_fact:
audit_arch: "b{{ ansible_architecture | regex_replace('.*(\\d\\d$)','\\1') }}"
#
# Inserts/replaces the rule in /etc/audit/rules.d
#
- name: Search /etc/audit/rules.d for other DAC audit rules
find:
paths: "/etc/audit/rules.d"
recurse: no
contains: "-F key=perm_mod$"
patterns: "*.rules"
register: find_removexattr
- name: If existing DAC ruleset not found, use /etc/audit/rules.d/privileged.rules as the recipient for the rule
set_fact:
all_files:
- /etc/audit/rules.d/privileged.rules
when: find_removexattr.matched == 0
- name: Use matched file as the recipient for the rule
set_fact:
all_files:
- "{{ find_removexattr.files | map(attribute='path') | list | first }}"
when: find_removexattr.matched > 0
- name: Inserts/replaces the removexattr rule in rules.d when on x86
lineinfile:
path: "{{ all_files[0] }}"
line: "-a always,exit -F arch=b32 -S removexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
create: yes
tags:
- audit_rules_dac_modification_removexattr
- medium_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27367-2
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030470
- name: Inserts/replaces the removexattr rule in rules.d when on x86_64
lineinfile:
path: "{{ all_files[0] }}"
line: "-a always,exit -F arch=b64 -S removexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
create: yes
when: audit_arch == 'b64'
tags:
- audit_rules_dac_modification_removexattr
- medium_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27367-2
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030470
#
# Inserts/replaces the rule in /etc/audit/audit.rules
#
- name: Inserts/replaces the removexattr rule in /etc/audit/audit.rules when on x86
lineinfile:
line: "{{ item }}"
state: present
dest: /etc/audit/audit.rules
with_items:
- "-a always,exit -F arch=b32 -S removexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
tags:
- audit_rules_dac_modification_removexattr
- medium_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27367-2
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030470
- name: Inserts/replaces the removexattr rule in audit.rules when on x86_64
lineinfile:
line: "{{ item }}"
state: present
dest: /etc/audit/audit.rules
create: yes
with_items:
- "-a always,exit -F arch=b64 -S removexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
when: audit_arch == 'b64'
tags:
- audit_rules_dac_modification_removexattr
- medium_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27367-2
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030470
|
Record Events that Modify the System's Discretionary Access Controls - setxattr
[ref]ruleAt a minimum, the audit system should collect file permission
changes for all users and root. If the auditd daemon is configured
to use the augenrules program to read audit rules during daemon
startup (the default), add the following line to a file with suffix
.rules in the directory /etc/audit/rules.d :
-a always,exit -F arch=b32 -S setxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S setxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S setxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S setxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
Warning:
Note that these rules can be configured in a
number of ways while still achieving the desired effect. Here the system calls
have been placed independent of other system calls. Grouping these system
calls with others as identifying earlier in this guide is more efficient.
Rationale:The changing of file permissions could indicate that a user is attempting to
gain access to information that would otherwise be disallowed. Auditing DAC modifications
can facilitate the identification of patterns of abuse among both authorized and
unauthorized users. Identifiers:
CCE-27213-8 References:
OL-07-030440, AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, CCI-000126, CCI-000172, Req-10.5.5, 5.2.10, SRG-OS-000064-GPOS-00033, SRG-OS-000392-GPOS-00172, SRG-OS-000458-GPOS-00203, 5.4.1.1, 3.1.7 Remediation Shell script: (show)
# First perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
PATTERN="-a always,exit -F arch=$ARCH -S setxattr.*"
GROUP="perm_mod"
FULL_RULE="-a always,exit -F arch=$ARCH -S setxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
# https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool tool used to load audit rules,
# either 'auditctl', or 'augenrules
# * audit rules' pattern audit rule skeleton for same syscall
# * syscall group greatest common string this rule shares
# with other rules from the same group
# * architecture architecture this rule is intended for
# * full form of new rule to add expected full form of audit rule as to be
# added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
# See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {
# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"
# Check sanity of the input
if [ $# -ne "5" ]
then
echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect
retval=0
# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
# Extract audit $key from audit rule so we can use it later
key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
# Check if particular audit rule is already defined
IFS=$'\n' matches=($(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
if [ $? -ne 0 ]
then
retval=1
fi
# Reset IFS back to default
unset IFS
for match in "${matches[@]}"
do
files_to_inspect=("${files_to_inspect[@]}" "${match}")
done
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
files_to_inspect="/etc/audit/rules.d/$key.rules"
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that:
# * follow the rule pattern, and
# * meet the hardware architecture requirement, and
# * are current syscall group specific
IFS=$'\n' existing_rules=($(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d" "$audit_file"))
if [ $? -ne 0 ]
then
retval=1
fi
# Reset IFS back to default
unset IFS
# Process rules found case-by-case
for rule in "${existing_rules[@]}"
do
# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
if [ "${rule}" != "${full_rule}" ]
then
# If so, isolate just '(-S \w)+' substring of that rule
rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
# Check if list of '-S syscall' arguments of that rule is subset
# of '-S syscall' list of expected $full_rule
if grep -q -- "$rule_syscalls" <<< "$full_rule"
then
# Rule is covered (i.e. the list of -S syscalls for this rule is
# subset of -S syscalls of $full_rule => existing rule can be deleted
# Thus delete the rule from audit.rules & our array
sed -i -e "\;${rule};d" "$audit_file"
if [ $? -ne 0 ]
then
retval=1
fi
existing_rules=("${existing_rules[@]//$rule/}")
else
# Rule isn't covered by $full_rule - it besides -S syscall arguments
# for this group contains also -S syscall arguments for other syscall
# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
# since 'lchown' & 'fchownat' share 'chown' substring
# Therefore:
# * 1) delete the original rule from audit.rules
# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
# * 2) delete the -S syscall arguments for this syscall group, but
# keep those not belonging to this syscall group
# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
# * 3) append the modified (filtered) rule again into audit.rules
# if the same rule not already present
#
# 1) Delete the original rule
sed -i -e "\;${rule};d" "$audit_file"
if [ $? -ne 0 ]
then
retval=1
fi
# 2) Delete syscalls for this group, but keep those from other groups
# Convert current rule syscall's string into array splitting by '-S' delimiter
IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
# Reset IFS back to default
unset IFS
# Declare new empty string to hold '-S syscall' arguments from other groups
new_syscalls_for_rule=''
# Walk through existing '-S syscall' arguments
for syscall_arg in "${rule_syscalls_as_array[@]}"
do
# Skip empty $syscall_arg values
if [ "$syscall_arg" == '' ]
then
continue
fi
# If the '-S syscall' doesn't belong to current group add it to the new list
# (together with adding '-S' delimiter back for each of such item found)
if grep -q -v -- "$group" <<< "$syscall_arg"
then
new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
fi
done
# Replace original '-S syscall' list with the new one for this rule
updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
# Squeeze repeated whitespace characters in rule definition (if any) into one
updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
# 3) Append the modified / filtered rule again into audit.rules
# (but only in case it's not present yet to prevent duplicate definitions)
if ! grep -q -- "$updated_rule" "$audit_file"
then
echo "$updated_rule" >> "$audit_file"
fi
fi
else
# $audit_file already contains the expected rule form for this
# architecture & key => don't insert it second time
append_expected_rule=1
fi
done
# We deleted all rules that were subset of the expected one for this arch & key.
# Also isolated rules containing system calls not from this system calls group.
# Now append the expected rule if it's not present in $audit_file yet
if [[ ${append_expected_rule} -eq "0" ]]
then
echo "$full_rule" >> "$audit_file"
fi
done
return $retval
}
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Reboot: | true |
---|
Strategy: | restrict |
---|
#
# What architecture are we on?
#
- name: Set architecture for audit setxattr tasks
set_fact:
audit_arch: "b{{ ansible_architecture | regex_replace('.*(\\d\\d$)','\\1') }}"
#
# Inserts/replaces the rule in /etc/audit/rules.d
#
- name: Search /etc/audit/rules.d for other DAC audit rules
find:
paths: "/etc/audit/rules.d"
recurse: no
contains: "-F key=perm_mod$"
patterns: "*.rules"
register: find_setxattr
- name: If existing DAC ruleset not found, use /etc/audit/rules.d/privileged.rules as the recipient for the rule
set_fact:
all_files:
- /etc/audit/rules.d/privileged.rules
when: find_setxattr.matched == 0
- name: Use matched file as the recipient for the rule
set_fact:
all_files:
- "{{ find_setxattr.files | map(attribute='path') | list | first }}"
when: find_setxattr.matched > 0
- name: Inserts/replaces the setxattr rule in rules.d when on x86
lineinfile:
path: "{{ all_files[0] }}"
line: "-a always,exit -F arch=b32 -S setxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
create: yes
tags:
- audit_rules_dac_modification_setxattr
- low_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27213-8
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030440
- name: Inserts/replaces the setxattr rule in rules.d when on x86_64
lineinfile:
path: "{{ all_files[0] }}"
line: "-a always,exit -F arch=b64 -S setxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
create: yes
when: audit_arch == 'b64'
tags:
- audit_rules_dac_modification_setxattr
- low_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27213-8
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030440
#
# Inserts/replaces the rule in /etc/audit/audit.rules
#
- name: Inserts/replaces the setxattr rule in /etc/audit/audit.rules when on x86
lineinfile:
line: "{{ item }}"
state: present
dest: /etc/audit/audit.rules
with_items:
- "-a always,exit -F arch=b32 -S setxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
tags:
- audit_rules_dac_modification_setxattr
- low_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27213-8
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030440
- name: Inserts/replaces the setxattr rule in audit.rules when on x86_64
lineinfile:
line: "{{ item }}"
state: present
dest: /etc/audit/audit.rules
create: yes
with_items:
- "-a always,exit -F arch=b64 -S setxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod"
when: audit_arch == 'b64'
tags:
- audit_rules_dac_modification_setxattr
- low_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27213-8
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.5.5
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030440
|
Record Attempts to Alter Logon and Logout Events
[ref]groupThe audit system already collects login information for all users
and root. If the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following lines to a file with suffix .rules in the
directory /etc/audit/rules.d in order to watch for attempted manual
edits of files involved in storing logon events:
-w /var/log/tallylog -p wa -k logins
-w /var/run/faillock/ -p wa -k logins
-w /var/log/lastlog -p wa -k logins
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following lines to
/etc/audit/audit.rules file in order to watch for unattempted manual
edits of files involved in storing logon events:
-w /var/log/tallylog -p wa -k logins
-w /var/run/faillock/ -p wa -k logins
-w /var/log/lastlog -p wa -k logins
|
contains 1 rule |
Record Attempts to Alter Logon and Logout Events
[ref]ruleThe audit system already collects login information for all users
and root. If the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following lines to a file with suffix .rules in the
directory /etc/audit/rules.d in order to watch for attempted manual
edits of files involved in storing logon events:
-w /var/log/tallylog -p wa -k logins
-w /var/run/faillock/ -p wa -k logins
-w /var/log/lastlog -p wa -k logins
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following lines to
/etc/audit/audit.rules file in order to watch for unattempted manual
edits of files involved in storing logon events:
-w /var/log/tallylog -p wa -k logins
-w /var/run/faillock/ -p wa -k logins
-w /var/log/lastlog -p wa -k logins
Rationale:Manual editing of these files may indicate nefarious activity, such
as an attacker attempting to remove evidence of an intrusion. Identifiers:
CCE-27204-7 References:
AC-17(7), AU-1(b), AU-12(a), AU-12(c), IR-5, CCI-000172, CCI-002884, Req-10.2.3, 5.2.8, 5.4.1.1, 3.1.7 Remediation Shell script: (show)
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix audit file system object watch rule for given path:
# * if rule exists, also verifies the -w bits match the requirements
# * if rule doesn't exist yet, appends expected rule form to $files_to_inspect
# audit rules file, depending on the tool which was used to load audit rules
#
# Expects four arguments (each of them is required) in the form of:
# * audit tool tool used to load audit rules,
# either 'auditctl', or 'augenrules'
# * path value of -w audit rule's argument
# * required access bits value of -p audit rule's argument
# * key value of -k audit rule's argument
#
# Example call:
#
# fix_audit_watch_rule "auditctl" "/etc/localtime" "wa" "audit_time_rules"
#
function fix_audit_watch_rule {
# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"
# Check sanity of the input
if [ $# -ne "4" ]
then
echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect
# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
# Get pair -- filepath : matching_row into @matches array
IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset IFS
# For each of the matched entries
for match in "${matches[@]}"
do
# Extract filepath from the match
rulesd_audit_file=$(echo $match | cut -f1 -d ':')
# Append that path into list of files for inspection
files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
done
# Case when particular audit rule isn't defined yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
files_to_inspect="/etc/audit/rules.d/$key.rules"
# If the $key.rules file doesn't exist yet, create it with correct permissions
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Escape slashes in path for use in sed pattern below
local esc_path=${path//$'/'/$'\/'}
# Define BRE whitespace class shortcut
local sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "$required_access_bits" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
fi
done
}
fix_audit_watch_rule "auditctl" "/var/log/tallylog" "wa" "logins"
fix_audit_watch_rule "augenrules" "/var/log/tallylog" "wa" "logins"
# Function to fix audit file system object watch rule for given path:
# * if rule exists, also verifies the -w bits match the requirements
# * if rule doesn't exist yet, appends expected rule form to $files_to_inspect
# audit rules file, depending on the tool which was used to load audit rules
#
# Expects four arguments (each of them is required) in the form of:
# * audit tool tool used to load audit rules,
# either 'auditctl', or 'augenrules'
# * path value of -w audit rule's argument
# * required access bits value of -p audit rule's argument
# * key value of -k audit rule's argument
#
# Example call:
#
# fix_audit_watch_rule "auditctl" "/etc/localtime" "wa" "audit_time_rules"
#
function fix_audit_watch_rule {
# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"
# Check sanity of the input
if [ $# -ne "4" ]
then
echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect
# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
# Get pair -- filepath : matching_row into @matches array
IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset IFS
# For each of the matched entries
for match in "${matches[@]}"
do
# Extract filepath from the match
rulesd_audit_file=$(echo $match | cut -f1 -d ':')
# Append that path into list of files for inspection
files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
done
# Case when particular audit rule isn't defined yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
files_to_inspect="/etc/audit/rules.d/$key.rules"
# If the $key.rules file doesn't exist yet, create it with correct permissions
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Escape slashes in path for use in sed pattern below
local esc_path=${path//$'/'/$'\/'}
# Define BRE whitespace class shortcut
local sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "$required_access_bits" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
fi
done
}
fix_audit_watch_rule "auditctl" "/var/run/faillock/" "wa" "logins"
fix_audit_watch_rule "augenrules" "/var/run/faillock/" "wa" "logins"
# Function to fix audit file system object watch rule for given path:
# * if rule exists, also verifies the -w bits match the requirements
# * if rule doesn't exist yet, appends expected rule form to $files_to_inspect
# audit rules file, depending on the tool which was used to load audit rules
#
# Expects four arguments (each of them is required) in the form of:
# * audit tool tool used to load audit rules,
# either 'auditctl', or 'augenrules'
# * path value of -w audit rule's argument
# * required access bits value of -p audit rule's argument
# * key value of -k audit rule's argument
#
# Example call:
#
# fix_audit_watch_rule "auditctl" "/etc/localtime" "wa" "audit_time_rules"
#
function fix_audit_watch_rule {
# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"
# Check sanity of the input
if [ $# -ne "4" ]
then
echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect
# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
# Get pair -- filepath : matching_row into @matches array
IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset IFS
# For each of the matched entries
for match in "${matches[@]}"
do
# Extract filepath from the match
rulesd_audit_file=$(echo $match | cut -f1 -d ':')
# Append that path into list of files for inspection
files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
done
# Case when particular audit rule isn't defined yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
files_to_inspect="/etc/audit/rules.d/$key.rules"
# If the $key.rules file doesn't exist yet, create it with correct permissions
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Escape slashes in path for use in sed pattern below
local esc_path=${path//$'/'/$'\/'}
# Define BRE whitespace class shortcut
local sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "$required_access_bits" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
fi
done
}
fix_audit_watch_rule "auditctl" "/var/log/lastlog" "wa" "logins"
fix_audit_watch_rule "augenrules" "/var/log/lastlog" "wa" "logins"
|
Record Unauthorized Access Attempts Events to Files (unsuccessful)
[ref]groupAt a minimum, the audit system should collect unauthorized file
accesses for all users and root. Note that the "-F arch=b32" lines should be
present even on a 64 bit system. These commands identify system calls for
auditing. Even if the system is 64 bit it can still execute 32 bit system
calls. Additionally, these rules can be configured in a number of ways while
still achieving the desired effect. An example of this is that the "-S" calls
could be split up and placed on separate lines, however, this is less efficient.
Add the following to /etc/audit/audit.rules :
-a always,exit -F arch=b32 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=4294967295 -F key=access
-a always,exit -F arch=b32 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=4294967295 -F key=access
If your system is 64 bit then these lines should be duplicated and the
arch=b32 replaced with arch=b64 as follows:
-a always,exit -F arch=b64 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=4294967295 -F key=access
-a always,exit -F arch=b64 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=4294967295 -F key=access
|
contains 1 rule |
Ensure auditd Collects Unauthorized Access Attempts to Files (unsuccessful)
[ref]ruleAt a minimum the audit system should collect unauthorized file
accesses for all users and root. If the auditd daemon is configured
to use the augenrules program to read audit rules during daemon
startup (the default), add the following lines to a file with suffix
.rules in the directory /etc/audit/rules.d :
-a always,exit -F arch=b32 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=4294967295 -F key=access
-a always,exit -F arch=b32 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=4294967295 -F key=access
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=4294967295 -F key=access
-a always,exit -F arch=b64 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=4294967295 -F key=access
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following lines to
/etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=4294967295 -F key=access
-a always,exit -F arch=b32 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=4294967295 -F key=access
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=4294967295 -F key=access
-a always,exit -F arch=b64 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=4294967295 -F key=access
Rationale:Unsuccessful attempts to access files could be an indicator of malicious activity on a system. Auditing
these events could serve as evidence of potential system compromise. Identifiers:
CCE-27347-4 References:
AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, CCI-000172, CCI-002884, Req-10.2.4, Req-10.2.1, 5.2.10, 5.4.1.1, 3.1.7 Remediation Shell script: (show)
# Perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
# First fix the -EACCES requirement
PATTERN="-a always,exit -F arch=$ARCH -S .* -F exit=-EACCES -F auid>=1000 -F auid!=4294967295 -k *"
# Use escaped BRE regex to specify rule group
GROUP="\(creat\|open\|truncate\)"
FULL_RULE="-a always,exit -F arch=$ARCH -S creat -S open -S openat -S open_by_handle_at -S truncate -S ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=4294967295 -k access"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
# https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool tool used to load audit rules,
# either 'auditctl', or 'augenrules
# * audit rules' pattern audit rule skeleton for same syscall
# * syscall group greatest common string this rule shares
# with other rules from the same group
# * architecture architecture this rule is intended for
# * full form of new rule to add expected full form of audit rule as to be
# added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
# See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {
# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"
# Check sanity of the input
if [ $# -ne "5" ]
then
echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect
retval=0
# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
# Extract audit $key from audit rule so we can use it later
key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
# Check if particular audit rule is already defined
IFS=$'\n' matches=($(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
if [ $? -ne 0 ]
then
retval=1
fi
# Reset IFS back to default
unset IFS
for match in "${matches[@]}"
do
files_to_inspect=("${files_to_inspect[@]}" "${match}")
done
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
files_to_inspect="/etc/audit/rules.d/$key.rules"
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that:
# * follow the rule pattern, and
# * meet the hardware architecture requirement, and
# * are current syscall group specific
IFS=$'\n' existing_rules=($(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d" "$audit_file"))
if [ $? -ne 0 ]
then
retval=1
fi
# Reset IFS back to default
unset IFS
# Process rules found case-by-case
for rule in "${existing_rules[@]}"
do
# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
if [ "${rule}" != "${full_rule}" ]
then
# If so, isolate just '(-S \w)+' substring of that rule
rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
# Check if list of '-S syscall' arguments of that rule is subset
# of '-S syscall' list of expected $full_rule
if grep -q -- "$rule_syscalls" <<< "$full_rule"
then
# Rule is covered (i.e. the list of -S syscalls for this rule is
# subset of -S syscalls of $full_rule => existing rule can be deleted
# Thus delete the rule from audit.rules & our array
sed -i -e "\;${rule};d" "$audit_file"
if [ $? -ne 0 ]
then
retval=1
fi
existing_rules=("${existing_rules[@]//$rule/}")
else
# Rule isn't covered by $full_rule - it besides -S syscall arguments
# for this group contains also -S syscall arguments for other syscall
# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
# since 'lchown' & 'fchownat' share 'chown' substring
# Therefore:
# * 1) delete the original rule from audit.rules
# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
# * 2) delete the -S syscall arguments for this syscall group, but
# keep those not belonging to this syscall group
# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
# * 3) append the modified (filtered) rule again into audit.rules
# if the same rule not already present
#
# 1) Delete the original rule
sed -i -e "\;${rule};d" "$audit_file"
if [ $? -ne 0 ]
then
retval=1
fi
# 2) Delete syscalls for this group, but keep those from other groups
# Convert current rule syscall's string into array splitting by '-S' delimiter
IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
# Reset IFS back to default
unset IFS
# Declare new empty string to hold '-S syscall' arguments from other groups
new_syscalls_for_rule=''
# Walk through existing '-S syscall' arguments
for syscall_arg in "${rule_syscalls_as_array[@]}"
do
# Skip empty $syscall_arg values
if [ "$syscall_arg" == '' ]
then
continue
fi
# If the '-S syscall' doesn't belong to current group add it to the new list
# (together with adding '-S' delimiter back for each of such item found)
if grep -q -v -- "$group" <<< "$syscall_arg"
then
new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
fi
done
# Replace original '-S syscall' list with the new one for this rule
updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
# Squeeze repeated whitespace characters in rule definition (if any) into one
updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
# 3) Append the modified / filtered rule again into audit.rules
# (but only in case it's not present yet to prevent duplicate definitions)
if ! grep -q -- "$updated_rule" "$audit_file"
then
echo "$updated_rule" >> "$audit_file"
fi
fi
else
# $audit_file already contains the expected rule form for this
# architecture & key => don't insert it second time
append_expected_rule=1
fi
done
# We deleted all rules that were subset of the expected one for this arch & key.
# Also isolated rules containing system calls not from this system calls group.
# Now append the expected rule if it's not present in $audit_file yet
if [[ ${append_expected_rule} -eq "0" ]]
then
echo "$full_rule" >> "$audit_file"
fi
done
return $retval
}
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
# Then fix the -EPERM requirement
PATTERN="-a always,exit -F arch=$ARCH -S .* -F exit=-EPERM -F auid>=1000 -F auid!=4294967295 -k *"
# No need to change content of $GROUP variable - it's the same as for -EACCES case above
FULL_RULE="-a always,exit -F arch=$ARCH -S creat -S open -S openat -S open_by_handle_at -S truncate -S ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=4294967295 -k access"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
# https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool tool used to load audit rules,
# either 'auditctl', or 'augenrules
# * audit rules' pattern audit rule skeleton for same syscall
# * syscall group greatest common string this rule shares
# with other rules from the same group
# * architecture architecture this rule is intended for
# * full form of new rule to add expected full form of audit rule as to be
# added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
# See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {
# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"
# Check sanity of the input
if [ $# -ne "5" ]
then
echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect
retval=0
# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
# Extract audit $key from audit rule so we can use it later
key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
# Check if particular audit rule is already defined
IFS=$'\n' matches=($(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
if [ $? -ne 0 ]
then
retval=1
fi
# Reset IFS back to default
unset IFS
for match in "${matches[@]}"
do
files_to_inspect=("${files_to_inspect[@]}" "${match}")
done
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
files_to_inspect="/etc/audit/rules.d/$key.rules"
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that:
# * follow the rule pattern, and
# * meet the hardware architecture requirement, and
# * are current syscall group specific
IFS=$'\n' existing_rules=($(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d" "$audit_file"))
if [ $? -ne 0 ]
then
retval=1
fi
# Reset IFS back to default
unset IFS
# Process rules found case-by-case
for rule in "${existing_rules[@]}"
do
# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
if [ "${rule}" != "${full_rule}" ]
then
# If so, isolate just '(-S \w)+' substring of that rule
rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
# Check if list of '-S syscall' arguments of that rule is subset
# of '-S syscall' list of expected $full_rule
if grep -q -- "$rule_syscalls" <<< "$full_rule"
then
# Rule is covered (i.e. the list of -S syscalls for this rule is
# subset of -S syscalls of $full_rule => existing rule can be deleted
# Thus delete the rule from audit.rules & our array
sed -i -e "\;${rule};d" "$audit_file"
if [ $? -ne 0 ]
then
retval=1
fi
existing_rules=("${existing_rules[@]//$rule/}")
else
# Rule isn't covered by $full_rule - it besides -S syscall arguments
# for this group contains also -S syscall arguments for other syscall
# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
# since 'lchown' & 'fchownat' share 'chown' substring
# Therefore:
# * 1) delete the original rule from audit.rules
# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
# * 2) delete the -S syscall arguments for this syscall group, but
# keep those not belonging to this syscall group
# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
# * 3) append the modified (filtered) rule again into audit.rules
# if the same rule not already present
#
# 1) Delete the original rule
sed -i -e "\;${rule};d" "$audit_file"
if [ $? -ne 0 ]
then
retval=1
fi
# 2) Delete syscalls for this group, but keep those from other groups
# Convert current rule syscall's string into array splitting by '-S' delimiter
IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
# Reset IFS back to default
unset IFS
# Declare new empty string to hold '-S syscall' arguments from other groups
new_syscalls_for_rule=''
# Walk through existing '-S syscall' arguments
for syscall_arg in "${rule_syscalls_as_array[@]}"
do
# Skip empty $syscall_arg values
if [ "$syscall_arg" == '' ]
then
continue
fi
# If the '-S syscall' doesn't belong to current group add it to the new list
# (together with adding '-S' delimiter back for each of such item found)
if grep -q -v -- "$group" <<< "$syscall_arg"
then
new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
fi
done
# Replace original '-S syscall' list with the new one for this rule
updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
# Squeeze repeated whitespace characters in rule definition (if any) into one
updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
# 3) Append the modified / filtered rule again into audit.rules
# (but only in case it's not present yet to prevent duplicate definitions)
if ! grep -q -- "$updated_rule" "$audit_file"
then
echo "$updated_rule" >> "$audit_file"
fi
fi
else
# $audit_file already contains the expected rule form for this
# architecture & key => don't insert it second time
append_expected_rule=1
fi
done
# We deleted all rules that were subset of the expected one for this arch & key.
# Also isolated rules containing system calls not from this system calls group.
# Now append the expected rule if it's not present in $audit_file yet
if [[ ${append_expected_rule} -eq "0" ]]
then
echo "$full_rule" >> "$audit_file"
fi
done
return $retval
}
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
|
Record Information on the Use of Privileged Commands
[ref]groupAt a minimum, the audit system should collect the execution of
privileged commands for all users and root.
|
contains 1 rule |
Ensure auditd Collects Information on the Use of Privileged Commands
[ref]ruleAt a minimum, the audit system should collect the execution of
privileged commands for all users and root. To find the relevant setuid /
setgid programs, run the following command for each local partition
PART:
$ sudo find PART -xdev -type f -perm -4000 -o -type f -perm -2000 2>/dev/null
If the auditd daemon is configured to use the augenrules
program to read audit rules during daemon startup (the default), add a line of
the following form to a file with suffix .rules in the directory
/etc/audit/rules.d for each setuid / setgid program on the system,
replacing the SETUID_PROG_PATH part with the full path of that setuid /
setgid program in the list:
-a always,exit -F path=SETUID_PROG_PATH -F perm=x -F auid>=1000 -F auid!=4294967295 -F key=privileged
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add a line of the following
form to /etc/audit/audit.rules for each setuid / setgid program on the
system, replacing the SETUID_PROG_PATH part with the full path of that
setuid / setgid program in the list:
-a always,exit -F path=SETUID_PROG_PATH -F perm=x -F auid>=1000 -F auid!=4294967295 -F key=privileged
Rationale:Misuse of privileged functions, either intentionally or unintentionally by
authorized users, or by unauthorized external entities that have compromised system accounts,
is a serious and ongoing concern and can have significant adverse impacts on organizations.
Auditing the use of privileged functions is one way to detect such misuse and identify
the risk from insider and advanced persistent threast.
Privileged programs are subject to escalation-of-privilege attacks,
which attempt to subvert their normal role of providing some necessary but
limited capability. As such, motivation exists to monitor these programs for
unusual activity.
Identifiers:
CCE-27437-3 References:
OL-07-030360, AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-2(4), AU-6(9), AU-12(a), AU-12(c), IR-5, CCI-002234, SRG-OS-000327-GPOS-00127, Req-10.2.2, 5.2.10, 5.4.1.1, 3.1.7 Remediation Shell script: (show)
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to perform remediation for 'audit_rules_privileged_commands' rule
#
# Expects two arguments:
#
# audit_tool tool used to load audit rules
# One of 'auditctl' or 'augenrules'
#
# min_auid Minimum original ID the user logged in with
# '500' for RHEL-6 and before, '1000' for RHEL-7 and after.
#
# Example Call(s):
#
# perform_audit_rules_privileged_commands_remediation "auditctl" "500"
# perform_audit_rules_privileged_commands_remediation "augenrules" "1000"
#
function perform_audit_rules_privileged_commands_remediation {
#
# Load function arguments into local variables
local tool="$1"
local min_auid="$2"
# Check sanity of the input
if [ $# -ne "2" ]
then
echo "Usage: perform_audit_rules_privileged_commands_remediation 'auditctl | augenrules' '500 | 1000'"
echo "Aborting."
exit 1
fi
declare -a files_to_inspect=()
# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If the audit tool is 'auditctl', then:
# * add '/etc/audit/audit.rules'to the list of files to be inspected,
# * specify '/etc/audit/audit.rules' as the output audit file, where
# missing rules should be inserted
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("/etc/audit/audit.rules")
output_audit_file="/etc/audit/audit.rules"
#
# If the audit tool is 'augenrules', then:
# * add '/etc/audit/rules.d/*.rules' to the list of files to be inspected
# (split by newline),
# * specify /etc/audit/rules.d/privileged.rules' as the output file, where
# missing rules should be inserted
elif [ "$tool" == 'augenrules' ]
then
IFS=$'\n' files_to_inspect=($(find /etc/audit/rules.d -maxdepth 1 -type f -name *.rules -print))
output_audit_file="/etc/audit/rules.d/privileged.rules"
fi
# Obtain the list of SUID/SGID binaries on the particular system (split by newline)
# into privileged_binaries array
IFS=$'\n' privileged_binaries=($(find / -xdev -type f -perm -4000 -o -type f -perm -2000 2>/dev/null))
# Keep list of SUID/SGID binaries that have been already handled within some previous iteration
declare -a sbinaries_to_skip=()
# For each found sbinary in privileged_binaries list
for sbinary in "${privileged_binaries[@]}"
do
# Replace possible slash '/' character in sbinary definition so we could use it in sed expressions below
sbinary_esc=${sbinary//$'/'/$'\/'}
# Check if this sbinary wasn't already handled in some of the previous iterations
# Return match only if whole sbinary definition matched (not in the case just prefix matched!!!)
if [[ $(sed -ne "/${sbinary_esc}$/p" <<< ${sbinaries_to_skip[@]}) ]]
then
# If so, don't process it second time & go to process next sbinary
continue
fi
# Reset the counter of inspected files when starting to check
# presence of existing audit rule for new sbinary
local count_of_inspected_files=0
# For each audit rules file from the list of files to be inspected
for afile in "${files_to_inspect[@]}"
do
# Search current audit rules file's content for match. Match criteria:
# * existing rule is for the same SUID/SGID binary we are currently processing (but
# can contain multiple -F path= elements covering multiple SUID/SGID binaries)
# * existing rule contains all arguments from expected rule form (though can contain
# them in arbitrary order)
base_search=$(sed -e "/-a always,exit/!d" -e "/-F path=${sbinary_esc}$/!d" \
-e "/-F path=[^[:space:]]\+/!d" -e "/-F perm=.*/!d" \
-e "/-F auid>=${min_auid}/!d" -e "/-F auid!=4294967295/!d" \
-e "/-k privileged/!d" $afile)
# Increase the count of inspected files for this sbinary
count_of_inspected_files=$((count_of_inspected_files + 1))
# Define expected rule form for this binary
expected_rule="-a always,exit -F path=${sbinary} -F perm=x -F auid>=${min_auid} -F auid!=4294967295 -k privileged"
# Require execute access type to be set for existing audit rule
exec_access='x'
# Search current audit rules file's content for presence of rule pattern for this sbinary
if [[ $base_search ]]
then
# Current audit rules file already contains rule for this binary =>
# Store the exact form of found rule for this binary for further processing
concrete_rule=$base_search
# Select all other SUID/SGID binaries possibly also present in the found rule
IFS=$'\n' handled_sbinaries=($(grep -o -e "-F path=[^[:space:]]\+" <<< $concrete_rule))
IFS=$' ' handled_sbinaries=(${handled_sbinaries[@]//-F path=/})
# Merge the list of such SUID/SGID binaries found in this iteration with global list ignoring duplicates
sbinaries_to_skip=($(for i in "${sbinaries_to_skip[@]}" "${handled_sbinaries[@]}"; do echo $i; done | sort -du))
# Separate concrete_rule into three sections using hash '#'
# sign as a delimiter around rule's permission section borders
concrete_rule=$(echo $concrete_rule | sed -n "s/\(.*\)\+\(-F perm=[rwax]\+\)\+/\1#\2#/p")
# Split concrete_rule into head, perm, and tail sections using hash '#' delimiter
IFS=$'#' read rule_head rule_perm rule_tail <<< "$concrete_rule"
# Extract already present exact access type [r|w|x|a] from rule's permission section
access_type=${rule_perm//-F perm=/}
# Verify current permission access type(s) for rule contain 'x' (execute) permission
if ! grep -q "$exec_access" <<< "$access_type"
then
# If not, append the 'x' (execute) permission to the existing access type bits
access_type="$access_type$exec_access"
# Reconstruct the permissions section for the rule
new_rule_perm="-F perm=$access_type"
# Update existing rule in current audit rules file with the new permission section
sed -i "s#${rule_head}\(.*\)${rule_tail}#${rule_head}${new_rule_perm}${rule_tail}#" $afile
fi
# If the required audit rule for particular sbinary wasn't found yet, insert it under following conditions:
#
# * in the "auditctl" mode of operation insert particular rule each time
# (because in this mode there's only one file -- /etc/audit/audit.rules to be inspected for presence of this rule),
#
# * in the "augenrules" mode of operation insert particular rule only once and only in case we have already
# searched all of the files from /etc/audit/rules.d/*.rules location (since that audit rule can be defined
# in any of those files and if not, we want it to be inserted only once into /etc/audit/rules.d/privileged.rules file)
#
elif [ "$tool" == "auditctl" ] || [[ "$tool" == "augenrules" && $count_of_inspected_files -eq "${#files_to_inspect[@]}" ]]
then
# Current audit rules file's content doesn't contain expected rule for this
# SUID/SGID binary yet => append it
echo $expected_rule >> $output_audit_file
fi
done
done
}
perform_audit_rules_privileged_commands_remediation "auditctl" "1000"
perform_audit_rules_privileged_commands_remediation "augenrules" "1000"
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Strategy: | restrict |
---|
- name: Search for privileged commands
shell: "find / -xdev -type f -perm -4000 -o -type f -perm -2000 2>/dev/null | cat"
check_mode: no
register: find_result
tags:
- audit_rules_privileged_commands
- medium_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27437-3
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-2(4)
- NIST-800-53-AU-6(9)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.2.2
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030360
# Inserts/replaces the rule in /etc/audit/rules.d
- name: Search /etc/audit/rules.d for audit rule entries
find:
paths: "/etc/audit/rules.d"
recurse: no
contains: "^.*path={{ item }} .*$"
patterns: "*.rules"
with_items:
- "{{ find_result.stdout_lines }}"
register: files_result
tags:
- audit_rules_privileged_commands
- medium_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27437-3
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-2(4)
- NIST-800-53-AU-6(9)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.2.2
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030360
- name: Overwrites the rule in rules.d
lineinfile:
path: "{{ item.1.path }}"
line: '-a always,exit -F path={{ item.0.item }} -F perm=x -F auid>=1000 -F auid!=4294967295 -F key=privileged'
create: no
regexp: "^.*path={{ item.0.item }} .*$"
with_subelements:
- "{{ files_result.results }}"
- files
tags:
- audit_rules_privileged_commands
- medium_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27437-3
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-2(4)
- NIST-800-53-AU-6(9)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.2.2
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030360
- name: Adds the rule in rules.d
lineinfile:
path: /etc/audit/rules.d/privileged.rules
line: '-a always,exit -F path={{ item.item }} -F perm=x -F auid>=1000 -F auid!=4294967295 -F key=privileged'
create: yes
with_items:
- "{{ files_result.results }}"
when: item.matched == 0
tags:
- audit_rules_privileged_commands
- medium_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27437-3
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-2(4)
- NIST-800-53-AU-6(9)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.2.2
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030360
# Adds/overwrites the rule in /etc/audit/audit.rules
- name: Inserts/replaces the rule in audit.rules
lineinfile:
path: /etc/audit/audit.rules
line: '-a always,exit -F path={{ item.item }} -F perm=x -F auid>=1000 -F auid!=4294967295 -F key=privileged'
create: yes
regexp: "^.*path={{ item.item }} .*$"
with_items:
- "{{ files_result.results }}"
tags:
- audit_rules_privileged_commands
- medium_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27437-3
- NIST-800-53-AC-17(7)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-2(4)
- NIST-800-53-AU-6(9)
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-IR-5
- NIST-800-171-3.1.7
- PCI-DSS-Req-10.2.2
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030360
|
Record File Deletion Events by User
[ref]groupAt a minimum, the audit system should collect file deletion events
for all users and root. If the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following line to a file with suffix .rules in the
directory /etc/audit/rules.d , setting ARCH to either b32 or b64 as
appropriate for your system:
-a always,exit -F arch=ARCH -S rmdir,unlink,unlinkat,rename,renameat -F auid>=1000 -F auid!=4294967295 -F key=delete
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file, setting ARCH to either b32 or b64 as
appropriate for your system:
-a always,exit -F arch=ARCH -S rmdir,unlink,unlinkat,rename,renameat -F auid>=1000 -F auid!=4294967295 -F key=delete
|
contains 1 rule |
Ensure auditd Collects File Deletion Events by User
[ref]ruleAt a minimum the audit system should collect file deletion events
for all users and root. If the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following line to a file with suffix .rules in the
directory /etc/audit/rules.d , setting ARCH to either b32 or b64 as
appropriate for your system:
-a always,exit -F arch=ARCH -S rmdiri,unlink,unlinkat,rename,renameat -F auid>=1000 -F auid!=4294967295 -F key=delete
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file, setting ARCH to either b32 or b64 as
appropriate for your system:
-a always,exit -F arch=ARCH -S rmdir,unlink,unlinkat,rename -S renameat -F auid>=1000 -F auid!=4294967295 -F key=delete
Rationale:Auditing file deletions will create an audit trail for files that are removed
from the system. The audit trail could aid in system troubleshooting, as well as, detecting
malicious processes that attempt to delete log files to conceal their presence. Identifiers:
CCE-27206-2 References:
AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, Req-10.2.7, 5.2.14, CCI-000366, CCI-000172, CCI-002884, 5.4.1.1, 3.1.7 Remediation Shell script: (show)
# Perform the remediation for the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
PATTERN="-a always,exit -F arch=$ARCH -S .* -F auid>=1000 -F auid!=4294967295 -k *"
# Use escaped BRE regex to specify rule group
GROUP="\(rmdir\|unlink\|rename\)"
FULL_RULE="-a always,exit -F arch=$ARCH -S rmdir -S unlink -S unlinkat -S rename -S renameat -F auid>=1000 -F auid!=4294967295 -k delete"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
# https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool tool used to load audit rules,
# either 'auditctl', or 'augenrules
# * audit rules' pattern audit rule skeleton for same syscall
# * syscall group greatest common string this rule shares
# with other rules from the same group
# * architecture architecture this rule is intended for
# * full form of new rule to add expected full form of audit rule as to be
# added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
# See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {
# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"
# Check sanity of the input
if [ $# -ne "5" ]
then
echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect
retval=0
# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
# Extract audit $key from audit rule so we can use it later
key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
# Check if particular audit rule is already defined
IFS=$'\n' matches=($(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
if [ $? -ne 0 ]
then
retval=1
fi
# Reset IFS back to default
unset IFS
for match in "${matches[@]}"
do
files_to_inspect=("${files_to_inspect[@]}" "${match}")
done
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
files_to_inspect="/etc/audit/rules.d/$key.rules"
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that:
# * follow the rule pattern, and
# * meet the hardware architecture requirement, and
# * are current syscall group specific
IFS=$'\n' existing_rules=($(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d" "$audit_file"))
if [ $? -ne 0 ]
then
retval=1
fi
# Reset IFS back to default
unset IFS
# Process rules found case-by-case
for rule in "${existing_rules[@]}"
do
# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
if [ "${rule}" != "${full_rule}" ]
then
# If so, isolate just '(-S \w)+' substring of that rule
rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
# Check if list of '-S syscall' arguments of that rule is subset
# of '-S syscall' list of expected $full_rule
if grep -q -- "$rule_syscalls" <<< "$full_rule"
then
# Rule is covered (i.e. the list of -S syscalls for this rule is
# subset of -S syscalls of $full_rule => existing rule can be deleted
# Thus delete the rule from audit.rules & our array
sed -i -e "\;${rule};d" "$audit_file"
if [ $? -ne 0 ]
then
retval=1
fi
existing_rules=("${existing_rules[@]//$rule/}")
else
# Rule isn't covered by $full_rule - it besides -S syscall arguments
# for this group contains also -S syscall arguments for other syscall
# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
# since 'lchown' & 'fchownat' share 'chown' substring
# Therefore:
# * 1) delete the original rule from audit.rules
# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
# * 2) delete the -S syscall arguments for this syscall group, but
# keep those not belonging to this syscall group
# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
# * 3) append the modified (filtered) rule again into audit.rules
# if the same rule not already present
#
# 1) Delete the original rule
sed -i -e "\;${rule};d" "$audit_file"
if [ $? -ne 0 ]
then
retval=1
fi
# 2) Delete syscalls for this group, but keep those from other groups
# Convert current rule syscall's string into array splitting by '-S' delimiter
IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
# Reset IFS back to default
unset IFS
# Declare new empty string to hold '-S syscall' arguments from other groups
new_syscalls_for_rule=''
# Walk through existing '-S syscall' arguments
for syscall_arg in "${rule_syscalls_as_array[@]}"
do
# Skip empty $syscall_arg values
if [ "$syscall_arg" == '' ]
then
continue
fi
# If the '-S syscall' doesn't belong to current group add it to the new list
# (together with adding '-S' delimiter back for each of such item found)
if grep -q -v -- "$group" <<< "$syscall_arg"
then
new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
fi
done
# Replace original '-S syscall' list with the new one for this rule
updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
# Squeeze repeated whitespace characters in rule definition (if any) into one
updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
# 3) Append the modified / filtered rule again into audit.rules
# (but only in case it's not present yet to prevent duplicate definitions)
if ! grep -q -- "$updated_rule" "$audit_file"
then
echo "$updated_rule" >> "$audit_file"
fi
fi
else
# $audit_file already contains the expected rule form for this
# architecture & key => don't insert it second time
append_expected_rule=1
fi
done
# We deleted all rules that were subset of the expected one for this arch & key.
# Also isolated rules containing system calls not from this system calls group.
# Now append the expected rule if it's not present in $audit_file yet
if [[ ${append_expected_rule} -eq "0" ]]
then
echo "$full_rule" >> "$audit_file"
fi
done
return $retval
}
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
|
Record Information on Kernel Modules Loading and Unloading
[ref]groupIf the auditd daemon is configured to use the augenrules program
to read audit rules during daemon startup (the default), add the following lines to a file
with suffix .rules in the directory /etc/audit/rules.d to capture kernel module
loading and unloading events, setting ARCH to either b32 or b64 as appropriate for your system:
-w /usr/sbin/insmod -p x -k modules
-w /usr/sbin/rmmod -p x -k modules
-w /usr/sbin/modprobe -p x -k modules
-a always,exit -F arch=ARCH -S init_module,delete_module -F key=modules
If the auditd daemon is configured to use the auditctl utility to read audit
rules during daemon startup, add the following lines to /etc/audit/audit.rules file
in order to capture kernel module loading and unloading events, setting ARCH to either b32 or
b64 as appropriate for your system:
-w /usr/sbin/insmod -p x -k modules
-w /usr/sbin/rmmod -p x -k modules
-w /usr/sbin/modprobe -p x -k modules
-a always,exit -F arch=ARCH -S init_module,delete_module -F key=modules
|
contains 1 rule |
Ensure auditd Collects Information on Kernel Module Loading and Unloading
[ref]ruleIf the auditd daemon is configured to use the augenrules program
to read audit rules during daemon startup (the default), add the following lines to a file
with suffix .rules in the directory /etc/audit/rules.d to capture kernel module
loading and unloading events, setting ARCH to either b32 or b64 as appropriate for your system:
-w /usr/sbin/insmod -p x -k modules
-w /usr/sbin/rmmod -p x -k modules
-w /usr/sbin/modprobe -p x -k modules
-a always,exit -F arch=ARCH -S init_module -S delete_module -k modules
If the auditd daemon is configured to use the auditctl utility to read audit
rules during daemon startup, add the following lines to /etc/audit/audit.rules file
in order to capture kernel module loading and unloading events, setting ARCH to either b32 or
b64 as appropriate for your system:
-w /usr/sbin/insmod -p x -k modules
-w /usr/sbin/rmmod -p x -k modules
-w /usr/sbin/modprobe -p x -k modules
-a always,exit -F arch=ARCH -S init_module -S delete_module -k modules
Rationale:The addition/removal of kernel modules can be used to alter the behavior of
the kernel and potentially introduce malicious code into kernel space. It is important
to have an audit trail of modules that have been introduced into the kernel. Identifiers:
CCE-27129-6 References:
AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, Req-10.2.7, 5.2.17, CCI-000172, 5.4.1.1, 3.1.7 Remediation Shell script: (show)
# First perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
# Note: 32-bit kernel modules can't be loaded / unloaded on 64-bit kernel =>
# it's not required on a 64-bit system to check also for the presence
# of 32-bit's equivalent of the corresponding rule. Therefore for
# each system it's enought to check presence of system's native rule form.
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b64")
for ARCH in "${RULE_ARCHS[@]}"
do
PATTERN="-a always,exit -F arch=$ARCH -S init_module -S delete_module \(-F key=\|-k \).*"
GROUP="modules"
FULL_RULE="-a always,exit -F arch=$ARCH -S init_module -S delete_module -k modules"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
# https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool tool used to load audit rules,
# either 'auditctl', or 'augenrules
# * audit rules' pattern audit rule skeleton for same syscall
# * syscall group greatest common string this rule shares
# with other rules from the same group
# * architecture architecture this rule is intended for
# * full form of new rule to add expected full form of audit rule as to be
# added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
# See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {
# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"
# Check sanity of the input
if [ $# -ne "5" ]
then
echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect
retval=0
# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
# Extract audit $key from audit rule so we can use it later
key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
# Check if particular audit rule is already defined
IFS=$'\n' matches=($(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
if [ $? -ne 0 ]
then
retval=1
fi
# Reset IFS back to default
unset IFS
for match in "${matches[@]}"
do
files_to_inspect=("${files_to_inspect[@]}" "${match}")
done
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
files_to_inspect="/etc/audit/rules.d/$key.rules"
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that:
# * follow the rule pattern, and
# * meet the hardware architecture requirement, and
# * are current syscall group specific
IFS=$'\n' existing_rules=($(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d" "$audit_file"))
if [ $? -ne 0 ]
then
retval=1
fi
# Reset IFS back to default
unset IFS
# Process rules found case-by-case
for rule in "${existing_rules[@]}"
do
# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
if [ "${rule}" != "${full_rule}" ]
then
# If so, isolate just '(-S \w)+' substring of that rule
rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
# Check if list of '-S syscall' arguments of that rule is subset
# of '-S syscall' list of expected $full_rule
if grep -q -- "$rule_syscalls" <<< "$full_rule"
then
# Rule is covered (i.e. the list of -S syscalls for this rule is
# subset of -S syscalls of $full_rule => existing rule can be deleted
# Thus delete the rule from audit.rules & our array
sed -i -e "\;${rule};d" "$audit_file"
if [ $? -ne 0 ]
then
retval=1
fi
existing_rules=("${existing_rules[@]//$rule/}")
else
# Rule isn't covered by $full_rule - it besides -S syscall arguments
# for this group contains also -S syscall arguments for other syscall
# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
# since 'lchown' & 'fchownat' share 'chown' substring
# Therefore:
# * 1) delete the original rule from audit.rules
# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
# * 2) delete the -S syscall arguments for this syscall group, but
# keep those not belonging to this syscall group
# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
# * 3) append the modified (filtered) rule again into audit.rules
# if the same rule not already present
#
# 1) Delete the original rule
sed -i -e "\;${rule};d" "$audit_file"
if [ $? -ne 0 ]
then
retval=1
fi
# 2) Delete syscalls for this group, but keep those from other groups
# Convert current rule syscall's string into array splitting by '-S' delimiter
IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
# Reset IFS back to default
unset IFS
# Declare new empty string to hold '-S syscall' arguments from other groups
new_syscalls_for_rule=''
# Walk through existing '-S syscall' arguments
for syscall_arg in "${rule_syscalls_as_array[@]}"
do
# Skip empty $syscall_arg values
if [ "$syscall_arg" == '' ]
then
continue
fi
# If the '-S syscall' doesn't belong to current group add it to the new list
# (together with adding '-S' delimiter back for each of such item found)
if grep -q -v -- "$group" <<< "$syscall_arg"
then
new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
fi
done
# Replace original '-S syscall' list with the new one for this rule
updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
# Squeeze repeated whitespace characters in rule definition (if any) into one
updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
# 3) Append the modified / filtered rule again into audit.rules
# (but only in case it's not present yet to prevent duplicate definitions)
if ! grep -q -- "$updated_rule" "$audit_file"
then
echo "$updated_rule" >> "$audit_file"
fi
fi
else
# $audit_file already contains the expected rule form for this
# architecture & key => don't insert it second time
append_expected_rule=1
fi
done
# We deleted all rules that were subset of the expected one for this arch & key.
# Also isolated rules containing system calls not from this system calls group.
# Now append the expected rule if it's not present in $audit_file yet
if [[ ${append_expected_rule} -eq "0" ]]
then
echo "$full_rule" >> "$audit_file"
fi
done
return $retval
}
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
# Then perform the remediations for the watch rules
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix audit file system object watch rule for given path:
# * if rule exists, also verifies the -w bits match the requirements
# * if rule doesn't exist yet, appends expected rule form to $files_to_inspect
# audit rules file, depending on the tool which was used to load audit rules
#
# Expects four arguments (each of them is required) in the form of:
# * audit tool tool used to load audit rules,
# either 'auditctl', or 'augenrules'
# * path value of -w audit rule's argument
# * required access bits value of -p audit rule's argument
# * key value of -k audit rule's argument
#
# Example call:
#
# fix_audit_watch_rule "auditctl" "/etc/localtime" "wa" "audit_time_rules"
#
function fix_audit_watch_rule {
# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"
# Check sanity of the input
if [ $# -ne "4" ]
then
echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect
# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
# Get pair -- filepath : matching_row into @matches array
IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset IFS
# For each of the matched entries
for match in "${matches[@]}"
do
# Extract filepath from the match
rulesd_audit_file=$(echo $match | cut -f1 -d ':')
# Append that path into list of files for inspection
files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
done
# Case when particular audit rule isn't defined yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
files_to_inspect="/etc/audit/rules.d/$key.rules"
# If the $key.rules file doesn't exist yet, create it with correct permissions
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Escape slashes in path for use in sed pattern below
local esc_path=${path//$'/'/$'\/'}
# Define BRE whitespace class shortcut
local sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "$required_access_bits" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
fi
done
}
fix_audit_watch_rule "auditctl" "/usr/sbin/insmod" "x" "modules"
fix_audit_watch_rule "augenrules" "/usr/sbin/insmod" "x" "modules"
# Function to fix audit file system object watch rule for given path:
# * if rule exists, also verifies the -w bits match the requirements
# * if rule doesn't exist yet, appends expected rule form to $files_to_inspect
# audit rules file, depending on the tool which was used to load audit rules
#
# Expects four arguments (each of them is required) in the form of:
# * audit tool tool used to load audit rules,
# either 'auditctl', or 'augenrules'
# * path value of -w audit rule's argument
# * required access bits value of -p audit rule's argument
# * key value of -k audit rule's argument
#
# Example call:
#
# fix_audit_watch_rule "auditctl" "/etc/localtime" "wa" "audit_time_rules"
#
function fix_audit_watch_rule {
# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"
# Check sanity of the input
if [ $# -ne "4" ]
then
echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect
# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
# Get pair -- filepath : matching_row into @matches array
IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset IFS
# For each of the matched entries
for match in "${matches[@]}"
do
# Extract filepath from the match
rulesd_audit_file=$(echo $match | cut -f1 -d ':')
# Append that path into list of files for inspection
files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
done
# Case when particular audit rule isn't defined yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
files_to_inspect="/etc/audit/rules.d/$key.rules"
# If the $key.rules file doesn't exist yet, create it with correct permissions
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Escape slashes in path for use in sed pattern below
local esc_path=${path//$'/'/$'\/'}
# Define BRE whitespace class shortcut
local sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "$required_access_bits" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
fi
done
}
fix_audit_watch_rule "auditctl" "/usr/sbin/rmmod" "x" "modules"
fix_audit_watch_rule "augenrules" "/usr/sbin/rmmod" "x" "modules"
# Function to fix audit file system object watch rule for given path:
# * if rule exists, also verifies the -w bits match the requirements
# * if rule doesn't exist yet, appends expected rule form to $files_to_inspect
# audit rules file, depending on the tool which was used to load audit rules
#
# Expects four arguments (each of them is required) in the form of:
# * audit tool tool used to load audit rules,
# either 'auditctl', or 'augenrules'
# * path value of -w audit rule's argument
# * required access bits value of -p audit rule's argument
# * key value of -k audit rule's argument
#
# Example call:
#
# fix_audit_watch_rule "auditctl" "/etc/localtime" "wa" "audit_time_rules"
#
function fix_audit_watch_rule {
# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"
# Check sanity of the input
if [ $# -ne "4" ]
then
echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect
# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
# Get pair -- filepath : matching_row into @matches array
IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset IFS
# For each of the matched entries
for match in "${matches[@]}"
do
# Extract filepath from the match
rulesd_audit_file=$(echo $match | cut -f1 -d ':')
# Append that path into list of files for inspection
files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
done
# Case when particular audit rule isn't defined yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
files_to_inspect="/etc/audit/rules.d/$key.rules"
# If the $key.rules file doesn't exist yet, create it with correct permissions
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Escape slashes in path for use in sed pattern below
local esc_path=${path//$'/'/$'\/'}
# Define BRE whitespace class shortcut
local sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "$required_access_bits" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
fi
done
}
fix_audit_watch_rule "auditctl" "/usr/sbin/modprobe" "x" "modules"
fix_audit_watch_rule "augenrules" "/usr/sbin/modprobe" "x" "modules"
|
Record Events that Modify User/Group Information
[ref]ruleIf the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following lines to a file with suffix .rules in the
directory /etc/audit/rules.d , in order to capture events that modify
account changes:
-w /etc/group -p wa -k audit_rules_usergroup_modification
-w /etc/passwd -p wa -k audit_rules_usergroup_modification
-w /etc/gshadow -p wa -k audit_rules_usergroup_modification
-w /etc/shadow -p wa -k audit_rules_usergroup_modification
-w /etc/security/opasswd -p wa -k audit_rules_usergroup_modification
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following lines to
/etc/audit/audit.rules file, in order to capture events that modify
account changes:
-w /etc/group -p wa -k audit_rules_usergroup_modification
-w /etc/passwd -p wa -k audit_rules_usergroup_modification
-w /etc/gshadow -p wa -k audit_rules_usergroup_modification
-w /etc/shadow -p wa -k audit_rules_usergroup_modification
-w /etc/security/opasswd -p wa -k audit_rules_usergroup_modification
Rationale:In addition to auditing new user and group accounts, these watches
will alert the system administrator(s) to any modifications. Any unexpected
users, groups, or modifications should be investigated for legitimacy. Identifiers:
CCE-27192-4 References:
OL-07-030710, AC-2(4), AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, CCI-000018, CCI-000172, CCI-001403, CCI-002130, Req-10.2.5, 5.2.5, SRG-OS-000004-GPOS-00004, SRG-OS-000239-GPOS-00089, SRG-OS-000241-GPOS-00090, SRG-OS-000241-GPOS-00091, SRG-OS-000303-GPOS-00120, SRG-OS-000476-GPOS-00221, 5.4.1.1, 3.1.7 Remediation Shell script: (show)
# Perform the remediation
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix audit file system object watch rule for given path:
# * if rule exists, also verifies the -w bits match the requirements
# * if rule doesn't exist yet, appends expected rule form to $files_to_inspect
# audit rules file, depending on the tool which was used to load audit rules
#
# Expects four arguments (each of them is required) in the form of:
# * audit tool tool used to load audit rules,
# either 'auditctl', or 'augenrules'
# * path value of -w audit rule's argument
# * required access bits value of -p audit rule's argument
# * key value of -k audit rule's argument
#
# Example call:
#
# fix_audit_watch_rule "auditctl" "/etc/localtime" "wa" "audit_time_rules"
#
function fix_audit_watch_rule {
# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"
# Check sanity of the input
if [ $# -ne "4" ]
then
echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect
# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
# Get pair -- filepath : matching_row into @matches array
IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset IFS
# For each of the matched entries
for match in "${matches[@]}"
do
# Extract filepath from the match
rulesd_audit_file=$(echo $match | cut -f1 -d ':')
# Append that path into list of files for inspection
files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
done
# Case when particular audit rule isn't defined yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
files_to_inspect="/etc/audit/rules.d/$key.rules"
# If the $key.rules file doesn't exist yet, create it with correct permissions
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Escape slashes in path for use in sed pattern below
local esc_path=${path//$'/'/$'\/'}
# Define BRE whitespace class shortcut
local sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "$required_access_bits" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
fi
done
}
fix_audit_watch_rule "auditctl" "/etc/group" "wa" "audit_rules_usergroup_modification"
fix_audit_watch_rule "augenrules" "/etc/group" "wa" "audit_rules_usergroup_modification"
# Function to fix audit file system object watch rule for given path:
# * if rule exists, also verifies the -w bits match the requirements
# * if rule doesn't exist yet, appends expected rule form to $files_to_inspect
# audit rules file, depending on the tool which was used to load audit rules
#
# Expects four arguments (each of them is required) in the form of:
# * audit tool tool used to load audit rules,
# either 'auditctl', or 'augenrules'
# * path value of -w audit rule's argument
# * required access bits value of -p audit rule's argument
# * key value of -k audit rule's argument
#
# Example call:
#
# fix_audit_watch_rule "auditctl" "/etc/localtime" "wa" "audit_time_rules"
#
function fix_audit_watch_rule {
# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"
# Check sanity of the input
if [ $# -ne "4" ]
then
echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect
# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
# Get pair -- filepath : matching_row into @matches array
IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset IFS
# For each of the matched entries
for match in "${matches[@]}"
do
# Extract filepath from the match
rulesd_audit_file=$(echo $match | cut -f1 -d ':')
# Append that path into list of files for inspection
files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
done
# Case when particular audit rule isn't defined yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
files_to_inspect="/etc/audit/rules.d/$key.rules"
# If the $key.rules file doesn't exist yet, create it with correct permissions
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Escape slashes in path for use in sed pattern below
local esc_path=${path//$'/'/$'\/'}
# Define BRE whitespace class shortcut
local sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "$required_access_bits" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
fi
done
}
fix_audit_watch_rule "auditctl" "/etc/passwd" "wa" "audit_rules_usergroup_modification"
fix_audit_watch_rule "augenrules" "/etc/passwd" "wa" "audit_rules_usergroup_modification"
# Function to fix audit file system object watch rule for given path:
# * if rule exists, also verifies the -w bits match the requirements
# * if rule doesn't exist yet, appends expected rule form to $files_to_inspect
# audit rules file, depending on the tool which was used to load audit rules
#
# Expects four arguments (each of them is required) in the form of:
# * audit tool tool used to load audit rules,
# either 'auditctl', or 'augenrules'
# * path value of -w audit rule's argument
# * required access bits value of -p audit rule's argument
# * key value of -k audit rule's argument
#
# Example call:
#
# fix_audit_watch_rule "auditctl" "/etc/localtime" "wa" "audit_time_rules"
#
function fix_audit_watch_rule {
# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"
# Check sanity of the input
if [ $# -ne "4" ]
then
echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect
# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
# Get pair -- filepath : matching_row into @matches array
IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset IFS
# For each of the matched entries
for match in "${matches[@]}"
do
# Extract filepath from the match
rulesd_audit_file=$(echo $match | cut -f1 -d ':')
# Append that path into list of files for inspection
files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
done
# Case when particular audit rule isn't defined yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
files_to_inspect="/etc/audit/rules.d/$key.rules"
# If the $key.rules file doesn't exist yet, create it with correct permissions
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Escape slashes in path for use in sed pattern below
local esc_path=${path//$'/'/$'\/'}
# Define BRE whitespace class shortcut
local sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "$required_access_bits" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
fi
done
}
fix_audit_watch_rule "auditctl" "/etc/gshadow" "wa" "audit_rules_usergroup_modification"
fix_audit_watch_rule "augenrules" "/etc/gshadow" "wa" "audit_rules_usergroup_modification"
# Function to fix audit file system object watch rule for given path:
# * if rule exists, also verifies the -w bits match the requirements
# * if rule doesn't exist yet, appends expected rule form to $files_to_inspect
# audit rules file, depending on the tool which was used to load audit rules
#
# Expects four arguments (each of them is required) in the form of:
# * audit tool tool used to load audit rules,
# either 'auditctl', or 'augenrules'
# * path value of -w audit rule's argument
# * required access bits value of -p audit rule's argument
# * key value of -k audit rule's argument
#
# Example call:
#
# fix_audit_watch_rule "auditctl" "/etc/localtime" "wa" "audit_time_rules"
#
function fix_audit_watch_rule {
# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"
# Check sanity of the input
if [ $# -ne "4" ]
then
echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect
# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
# Get pair -- filepath : matching_row into @matches array
IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset IFS
# For each of the matched entries
for match in "${matches[@]}"
do
# Extract filepath from the match
rulesd_audit_file=$(echo $match | cut -f1 -d ':')
# Append that path into list of files for inspection
files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
done
# Case when particular audit rule isn't defined yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
files_to_inspect="/etc/audit/rules.d/$key.rules"
# If the $key.rules file doesn't exist yet, create it with correct permissions
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Escape slashes in path for use in sed pattern below
local esc_path=${path//$'/'/$'\/'}
# Define BRE whitespace class shortcut
local sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "$required_access_bits" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
fi
done
}
fix_audit_watch_rule "auditctl" "/etc/shadow" "wa" "audit_rules_usergroup_modification"
fix_audit_watch_rule "augenrules" "/etc/shadow" "wa" "audit_rules_usergroup_modification"
# Function to fix audit file system object watch rule for given path:
# * if rule exists, also verifies the -w bits match the requirements
# * if rule doesn't exist yet, appends expected rule form to $files_to_inspect
# audit rules file, depending on the tool which was used to load audit rules
#
# Expects four arguments (each of them is required) in the form of:
# * audit tool tool used to load audit rules,
# either 'auditctl', or 'augenrules'
# * path value of -w audit rule's argument
# * required access bits value of -p audit rule's argument
# * key value of -k audit rule's argument
#
# Example call:
#
# fix_audit_watch_rule "auditctl" "/etc/localtime" "wa" "audit_time_rules"
#
function fix_audit_watch_rule {
# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"
# Check sanity of the input
if [ $# -ne "4" ]
then
echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect
# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
# Get pair -- filepath : matching_row into @matches array
IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset IFS
# For each of the matched entries
for match in "${matches[@]}"
do
# Extract filepath from the match
rulesd_audit_file=$(echo $match | cut -f1 -d ':')
# Append that path into list of files for inspection
files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
done
# Case when particular audit rule isn't defined yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
files_to_inspect="/etc/audit/rules.d/$key.rules"
# If the $key.rules file doesn't exist yet, create it with correct permissions
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Escape slashes in path for use in sed pattern below
local esc_path=${path//$'/'/$'\/'}
# Define BRE whitespace class shortcut
local sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "$required_access_bits" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
fi
done
}
fix_audit_watch_rule "auditctl" "/etc/security/opasswd" "wa" "audit_rules_usergroup_modification"
fix_audit_watch_rule "augenrules" "/etc/security/opasswd" "wa" "audit_rules_usergroup_modification"
|
Record Events that Modify the System's Network Environment
[ref]ruleIf the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following lines to a file with suffix .rules in the
directory /etc/audit/rules.d , setting ARCH to either b32 or b64 as
appropriate for your system:
-a always,exit -F arch=ARCH -S sethostname,setdomainname -F key=audit_rules_networkconfig_modification
-w /etc/issue -p wa -k audit_rules_networkconfig_modification
-w /etc/issue.net -p wa -k audit_rules_networkconfig_modification
-w /etc/hosts -p wa -k audit_rules_networkconfig_modification
-w /etc/sysconfig/network -p wa -k audit_rules_networkconfig_modification
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following lines to
/etc/audit/audit.rules file, setting ARCH to either b32 or b64 as
appropriate for your system:
-a always,exit -F arch=ARCH -S sethostname,setdomainname -F key=audit_rules_networkconfig_modification
-w /etc/issue -p wa -k audit_rules_networkconfig_modification
-w /etc/issue.net -p wa -k audit_rules_networkconfig_modification
-w /etc/hosts -p wa -k audit_rules_networkconfig_modification
-w /etc/sysconfig/network -p wa -k audit_rules_networkconfig_modification
Rationale:The network environment should not be modified by anything other
than administrator action. Any change to network parameters should be
audited. Identifiers:
CCE-27076-9 References:
AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, Req-10.5.5, 5.4.1.1, 5.2.6, 3.1.7 Remediation Shell script: (show)
# First perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
PATTERN="-a always,exit -F arch=$ARCH -S .* -k *"
# Use escaped BRE regex to specify rule group
GROUP="set\(host\|domain\)name"
FULL_RULE="-a always,exit -F arch=$ARCH -S sethostname -S setdomainname -k audit_rules_networkconfig_modification"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
# https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool tool used to load audit rules,
# either 'auditctl', or 'augenrules
# * audit rules' pattern audit rule skeleton for same syscall
# * syscall group greatest common string this rule shares
# with other rules from the same group
# * architecture architecture this rule is intended for
# * full form of new rule to add expected full form of audit rule as to be
# added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
# See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {
# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"
# Check sanity of the input
if [ $# -ne "5" ]
then
echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect
retval=0
# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
# Extract audit $key from audit rule so we can use it later
key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
# Check if particular audit rule is already defined
IFS=$'\n' matches=($(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
if [ $? -ne 0 ]
then
retval=1
fi
# Reset IFS back to default
unset IFS
for match in "${matches[@]}"
do
files_to_inspect=("${files_to_inspect[@]}" "${match}")
done
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
files_to_inspect="/etc/audit/rules.d/$key.rules"
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that:
# * follow the rule pattern, and
# * meet the hardware architecture requirement, and
# * are current syscall group specific
IFS=$'\n' existing_rules=($(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d" "$audit_file"))
if [ $? -ne 0 ]
then
retval=1
fi
# Reset IFS back to default
unset IFS
# Process rules found case-by-case
for rule in "${existing_rules[@]}"
do
# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
if [ "${rule}" != "${full_rule}" ]
then
# If so, isolate just '(-S \w)+' substring of that rule
rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
# Check if list of '-S syscall' arguments of that rule is subset
# of '-S syscall' list of expected $full_rule
if grep -q -- "$rule_syscalls" <<< "$full_rule"
then
# Rule is covered (i.e. the list of -S syscalls for this rule is
# subset of -S syscalls of $full_rule => existing rule can be deleted
# Thus delete the rule from audit.rules & our array
sed -i -e "\;${rule};d" "$audit_file"
if [ $? -ne 0 ]
then
retval=1
fi
existing_rules=("${existing_rules[@]//$rule/}")
else
# Rule isn't covered by $full_rule - it besides -S syscall arguments
# for this group contains also -S syscall arguments for other syscall
# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
# since 'lchown' & 'fchownat' share 'chown' substring
# Therefore:
# * 1) delete the original rule from audit.rules
# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
# * 2) delete the -S syscall arguments for this syscall group, but
# keep those not belonging to this syscall group
# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
# * 3) append the modified (filtered) rule again into audit.rules
# if the same rule not already present
#
# 1) Delete the original rule
sed -i -e "\;${rule};d" "$audit_file"
if [ $? -ne 0 ]
then
retval=1
fi
# 2) Delete syscalls for this group, but keep those from other groups
# Convert current rule syscall's string into array splitting by '-S' delimiter
IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
# Reset IFS back to default
unset IFS
# Declare new empty string to hold '-S syscall' arguments from other groups
new_syscalls_for_rule=''
# Walk through existing '-S syscall' arguments
for syscall_arg in "${rule_syscalls_as_array[@]}"
do
# Skip empty $syscall_arg values
if [ "$syscall_arg" == '' ]
then
continue
fi
# If the '-S syscall' doesn't belong to current group add it to the new list
# (together with adding '-S' delimiter back for each of such item found)
if grep -q -v -- "$group" <<< "$syscall_arg"
then
new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
fi
done
# Replace original '-S syscall' list with the new one for this rule
updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
# Squeeze repeated whitespace characters in rule definition (if any) into one
updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
# 3) Append the modified / filtered rule again into audit.rules
# (but only in case it's not present yet to prevent duplicate definitions)
if ! grep -q -- "$updated_rule" "$audit_file"
then
echo "$updated_rule" >> "$audit_file"
fi
fi
else
# $audit_file already contains the expected rule form for this
# architecture & key => don't insert it second time
append_expected_rule=1
fi
done
# We deleted all rules that were subset of the expected one for this arch & key.
# Also isolated rules containing system calls not from this system calls group.
# Now append the expected rule if it's not present in $audit_file yet
if [[ ${append_expected_rule} -eq "0" ]]
then
echo "$full_rule" >> "$audit_file"
fi
done
return $retval
}
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
# Then perform the remediations for the watch rules
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix audit file system object watch rule for given path:
# * if rule exists, also verifies the -w bits match the requirements
# * if rule doesn't exist yet, appends expected rule form to $files_to_inspect
# audit rules file, depending on the tool which was used to load audit rules
#
# Expects four arguments (each of them is required) in the form of:
# * audit tool tool used to load audit rules,
# either 'auditctl', or 'augenrules'
# * path value of -w audit rule's argument
# * required access bits value of -p audit rule's argument
# * key value of -k audit rule's argument
#
# Example call:
#
# fix_audit_watch_rule "auditctl" "/etc/localtime" "wa" "audit_time_rules"
#
function fix_audit_watch_rule {
# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"
# Check sanity of the input
if [ $# -ne "4" ]
then
echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect
# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
# Get pair -- filepath : matching_row into @matches array
IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset IFS
# For each of the matched entries
for match in "${matches[@]}"
do
# Extract filepath from the match
rulesd_audit_file=$(echo $match | cut -f1 -d ':')
# Append that path into list of files for inspection
files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
done
# Case when particular audit rule isn't defined yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
files_to_inspect="/etc/audit/rules.d/$key.rules"
# If the $key.rules file doesn't exist yet, create it with correct permissions
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Escape slashes in path for use in sed pattern below
local esc_path=${path//$'/'/$'\/'}
# Define BRE whitespace class shortcut
local sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "$required_access_bits" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
fi
done
}
fix_audit_watch_rule "auditctl" "/etc/issue" "wa" "audit_rules_networkconfig_modification"
fix_audit_watch_rule "augenrules" "/etc/issue" "wa" "audit_rules_networkconfig_modification"
# Function to fix audit file system object watch rule for given path:
# * if rule exists, also verifies the -w bits match the requirements
# * if rule doesn't exist yet, appends expected rule form to $files_to_inspect
# audit rules file, depending on the tool which was used to load audit rules
#
# Expects four arguments (each of them is required) in the form of:
# * audit tool tool used to load audit rules,
# either 'auditctl', or 'augenrules'
# * path value of -w audit rule's argument
# * required access bits value of -p audit rule's argument
# * key value of -k audit rule's argument
#
# Example call:
#
# fix_audit_watch_rule "auditctl" "/etc/localtime" "wa" "audit_time_rules"
#
function fix_audit_watch_rule {
# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"
# Check sanity of the input
if [ $# -ne "4" ]
then
echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect
# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
# Get pair -- filepath : matching_row into @matches array
IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset IFS
# For each of the matched entries
for match in "${matches[@]}"
do
# Extract filepath from the match
rulesd_audit_file=$(echo $match | cut -f1 -d ':')
# Append that path into list of files for inspection
files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
done
# Case when particular audit rule isn't defined yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
files_to_inspect="/etc/audit/rules.d/$key.rules"
# If the $key.rules file doesn't exist yet, create it with correct permissions
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Escape slashes in path for use in sed pattern below
local esc_path=${path//$'/'/$'\/'}
# Define BRE whitespace class shortcut
local sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "$required_access_bits" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
fi
done
}
fix_audit_watch_rule "auditctl" "/etc/issue.net" "wa" "audit_rules_networkconfig_modification"
fix_audit_watch_rule "augenrules" "/etc/issue.net" "wa" "audit_rules_networkconfig_modification"
# Function to fix audit file system object watch rule for given path:
# * if rule exists, also verifies the -w bits match the requirements
# * if rule doesn't exist yet, appends expected rule form to $files_to_inspect
# audit rules file, depending on the tool which was used to load audit rules
#
# Expects four arguments (each of them is required) in the form of:
# * audit tool tool used to load audit rules,
# either 'auditctl', or 'augenrules'
# * path value of -w audit rule's argument
# * required access bits value of -p audit rule's argument
# * key value of -k audit rule's argument
#
# Example call:
#
# fix_audit_watch_rule "auditctl" "/etc/localtime" "wa" "audit_time_rules"
#
function fix_audit_watch_rule {
# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"
# Check sanity of the input
if [ $# -ne "4" ]
then
echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect
# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
# Get pair -- filepath : matching_row into @matches array
IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset IFS
# For each of the matched entries
for match in "${matches[@]}"
do
# Extract filepath from the match
rulesd_audit_file=$(echo $match | cut -f1 -d ':')
# Append that path into list of files for inspection
files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
done
# Case when particular audit rule isn't defined yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
files_to_inspect="/etc/audit/rules.d/$key.rules"
# If the $key.rules file doesn't exist yet, create it with correct permissions
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Escape slashes in path for use in sed pattern below
local esc_path=${path//$'/'/$'\/'}
# Define BRE whitespace class shortcut
local sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "$required_access_bits" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
fi
done
}
fix_audit_watch_rule "auditctl" "/etc/hosts" "wa" "audit_rules_networkconfig_modification"
fix_audit_watch_rule "augenrules" "/etc/hosts" "wa" "audit_rules_networkconfig_modification"
# Function to fix audit file system object watch rule for given path:
# * if rule exists, also verifies the -w bits match the requirements
# * if rule doesn't exist yet, appends expected rule form to $files_to_inspect
# audit rules file, depending on the tool which was used to load audit rules
#
# Expects four arguments (each of them is required) in the form of:
# * audit tool tool used to load audit rules,
# either 'auditctl', or 'augenrules'
# * path value of -w audit rule's argument
# * required access bits value of -p audit rule's argument
# * key value of -k audit rule's argument
#
# Example call:
#
# fix_audit_watch_rule "auditctl" "/etc/localtime" "wa" "audit_time_rules"
#
function fix_audit_watch_rule {
# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"
# Check sanity of the input
if [ $# -ne "4" ]
then
echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect
# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
# Get pair -- filepath : matching_row into @matches array
IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset IFS
# For each of the matched entries
for match in "${matches[@]}"
do
# Extract filepath from the match
rulesd_audit_file=$(echo $match | cut -f1 -d ':')
# Append that path into list of files for inspection
files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
done
# Case when particular audit rule isn't defined yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
files_to_inspect="/etc/audit/rules.d/$key.rules"
# If the $key.rules file doesn't exist yet, create it with correct permissions
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Escape slashes in path for use in sed pattern below
local esc_path=${path//$'/'/$'\/'}
# Define BRE whitespace class shortcut
local sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "$required_access_bits" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
fi
done
}
fix_audit_watch_rule "auditctl" "/etc/sysconfig/network" "wa" "audit_rules_networkconfig_modification"
fix_audit_watch_rule "augenrules" "/etc/sysconfig/network" "wa" "audit_rules_networkconfig_modification"
|
System Audit Logs Must Have Mode 0640 or Less Permissive
[ref]rule
If log_group in /etc/audit/auditd.conf is set to a group other than the root
group account, change the mode of the audit log files with the following command:
$ sudo chmod 0640 audit_file
Otherwise, change the mode of the audit log files with the following command:
$ sudo chmod 0600 audit_file
Rationale:
If users can write to audit logs, audit trails can be modified or destroyed.
Remediation Shell script: (show)
if `grep -q ^log_group /etc/audit/auditd.conf` ; then
GROUP=$(awk -F "=" '/log_group/ {print $2}' /etc/audit/auditd.conf | tr -d ' ')
if ! [ "${GROUP}" == 'root' ] ; then
chmod 0640 /var/log/audit/audit.log
chmod 0440 /var/log/audit/audit.log.*
else
chmod 0600 /var/log/audit/audit.log
chmod 0400 /var/log/audit/audit.log.*
fi
chmod 0640 /etc/audit/audit*
chmod 0640 /etc/audit/rules.d/*
else
chmod 0600 /var/log/audit/audit.log
chmod 0400 /var/log/audit/audit.log.*
chmod 0640 /etc/audit/audit*
chmod 0640 /etc/audit/rules.d/*
fi
|
System Audit Logs Must Be Owned By Root
[ref]ruleAll audit logs must be owned by root user and group. By default, the path for audit log is /var/log/audit/ .
To properly set the owner of /var/log/audit , run the command:
$ sudo chown root /var/log/audit
To properly set the owner of /var/log/audit/* , run the command:
$ sudo chown root /var/log/audit/*
Rationale:Unauthorized disclosure of audit records can reveal system and configuration data to
attackers, thus compromising its confidentiality. Remediation Shell script: (show)
if `grep -q ^log_group /etc/audit/auditd.conf` ; then
GROUP=$(awk -F "=" '/log_group/ {print $2}' /etc/audit/auditd.conf | tr -d ' ')
if ! [ "${GROUP}" == 'root' ] ; then
chown root.${GROUP} /var/log/audit
chown root.${GROUP} /var/log/audit/audit.log*
else
chown root.root /var/log/audit
chown root.root /var/log/audit/audit.log*
fi
else
chown root.root /var/log/audit
chown root.root /var/log/audit/audit.log*
fi
|
Record Events that Modify the System's Mandatory Access Controls
[ref]ruleIf the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following line to a file with suffix .rules in the
directory /etc/audit/rules.d :
-w /etc/selinux/ -p wa -k MAC-policy
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file:
-w /etc/selinux/ -p wa -k MAC-policy
Rationale:The system's mandatory access policy (SELinux) should not be
arbitrarily changed by anything other than administrator action. All changes to
MAC policy should be audited. Identifiers:
CCE-27168-4 References:
AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, Req-10.5.5, 5.2.7, 5.4.1.1, 3.1.8 Remediation Shell script: (show)
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix audit file system object watch rule for given path:
# * if rule exists, also verifies the -w bits match the requirements
# * if rule doesn't exist yet, appends expected rule form to $files_to_inspect
# audit rules file, depending on the tool which was used to load audit rules
#
# Expects four arguments (each of them is required) in the form of:
# * audit tool tool used to load audit rules,
# either 'auditctl', or 'augenrules'
# * path value of -w audit rule's argument
# * required access bits value of -p audit rule's argument
# * key value of -k audit rule's argument
#
# Example call:
#
# fix_audit_watch_rule "auditctl" "/etc/localtime" "wa" "audit_time_rules"
#
function fix_audit_watch_rule {
# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"
# Check sanity of the input
if [ $# -ne "4" ]
then
echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect
# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
# Get pair -- filepath : matching_row into @matches array
IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset IFS
# For each of the matched entries
for match in "${matches[@]}"
do
# Extract filepath from the match
rulesd_audit_file=$(echo $match | cut -f1 -d ':')
# Append that path into list of files for inspection
files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
done
# Case when particular audit rule isn't defined yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
files_to_inspect="/etc/audit/rules.d/$key.rules"
# If the $key.rules file doesn't exist yet, create it with correct permissions
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Escape slashes in path for use in sed pattern below
local esc_path=${path//$'/'/$'\/'}
# Define BRE whitespace class shortcut
local sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "$required_access_bits" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
fi
done
}
fix_audit_watch_rule "auditctl" "/etc/selinux/" "wa" "MAC-policy"
fix_audit_watch_rule "augenrules" "/etc/selinux/" "wa" "MAC-policy"
|
Record Attempts to Alter Process and Session Initiation Information
[ref]ruleThe audit system already collects process information for all
users and root. If the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following lines to a file with suffix .rules in the
directory /etc/audit/rules.d in order to watch for attempted manual
edits of files involved in storing such process information:
-w /var/run/utmp -p wa -k session
-w /var/log/btmp -p wa -k session
-w /var/log/wtmp -p wa -k session
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following lines to
/etc/audit/audit.rules file in order to watch for attempted manual
edits of files involved in storing such process information:
-w /var/run/utmp -p wa -k session
-w /var/log/btmp -p wa -k session
-w /var/log/wtmp -p wa -k session
Rationale:Manual editing of these files may indicate nefarious activity, such
as an attacker attempting to remove evidence of an intrusion. Identifiers:
CCE-27301-1 References:
AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, Req-10.2.3, 5.2.9, 5.4.1.1, 3.1.7 Remediation Shell script: (show)
# Perform the remediation
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix audit file system object watch rule for given path:
# * if rule exists, also verifies the -w bits match the requirements
# * if rule doesn't exist yet, appends expected rule form to $files_to_inspect
# audit rules file, depending on the tool which was used to load audit rules
#
# Expects four arguments (each of them is required) in the form of:
# * audit tool tool used to load audit rules,
# either 'auditctl', or 'augenrules'
# * path value of -w audit rule's argument
# * required access bits value of -p audit rule's argument
# * key value of -k audit rule's argument
#
# Example call:
#
# fix_audit_watch_rule "auditctl" "/etc/localtime" "wa" "audit_time_rules"
#
function fix_audit_watch_rule {
# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"
# Check sanity of the input
if [ $# -ne "4" ]
then
echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect
# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
# Get pair -- filepath : matching_row into @matches array
IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset IFS
# For each of the matched entries
for match in "${matches[@]}"
do
# Extract filepath from the match
rulesd_audit_file=$(echo $match | cut -f1 -d ':')
# Append that path into list of files for inspection
files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
done
# Case when particular audit rule isn't defined yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
files_to_inspect="/etc/audit/rules.d/$key.rules"
# If the $key.rules file doesn't exist yet, create it with correct permissions
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Escape slashes in path for use in sed pattern below
local esc_path=${path//$'/'/$'\/'}
# Define BRE whitespace class shortcut
local sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "$required_access_bits" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
fi
done
}
fix_audit_watch_rule "auditctl" "/var/run/utmp" "wa" "session"
fix_audit_watch_rule "augenrules" "/var/run/utmp" "wa" "session"
# Function to fix audit file system object watch rule for given path:
# * if rule exists, also verifies the -w bits match the requirements
# * if rule doesn't exist yet, appends expected rule form to $files_to_inspect
# audit rules file, depending on the tool which was used to load audit rules
#
# Expects four arguments (each of them is required) in the form of:
# * audit tool tool used to load audit rules,
# either 'auditctl', or 'augenrules'
# * path value of -w audit rule's argument
# * required access bits value of -p audit rule's argument
# * key value of -k audit rule's argument
#
# Example call:
#
# fix_audit_watch_rule "auditctl" "/etc/localtime" "wa" "audit_time_rules"
#
function fix_audit_watch_rule {
# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"
# Check sanity of the input
if [ $# -ne "4" ]
then
echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect
# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
# Get pair -- filepath : matching_row into @matches array
IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset IFS
# For each of the matched entries
for match in "${matches[@]}"
do
# Extract filepath from the match
rulesd_audit_file=$(echo $match | cut -f1 -d ':')
# Append that path into list of files for inspection
files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
done
# Case when particular audit rule isn't defined yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
files_to_inspect="/etc/audit/rules.d/$key.rules"
# If the $key.rules file doesn't exist yet, create it with correct permissions
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Escape slashes in path for use in sed pattern below
local esc_path=${path//$'/'/$'\/'}
# Define BRE whitespace class shortcut
local sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "$required_access_bits" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
fi
done
}
fix_audit_watch_rule "auditctl" "/var/log/btmp" "wa" "session"
fix_audit_watch_rule "augenrules" "/var/log/btmp" "wa" "session"
# Function to fix audit file system object watch rule for given path:
# * if rule exists, also verifies the -w bits match the requirements
# * if rule doesn't exist yet, appends expected rule form to $files_to_inspect
# audit rules file, depending on the tool which was used to load audit rules
#
# Expects four arguments (each of them is required) in the form of:
# * audit tool tool used to load audit rules,
# either 'auditctl', or 'augenrules'
# * path value of -w audit rule's argument
# * required access bits value of -p audit rule's argument
# * key value of -k audit rule's argument
#
# Example call:
#
# fix_audit_watch_rule "auditctl" "/etc/localtime" "wa" "audit_time_rules"
#
function fix_audit_watch_rule {
# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"
# Check sanity of the input
if [ $# -ne "4" ]
then
echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect
# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
# Get pair -- filepath : matching_row into @matches array
IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset IFS
# For each of the matched entries
for match in "${matches[@]}"
do
# Extract filepath from the match
rulesd_audit_file=$(echo $match | cut -f1 -d ':')
# Append that path into list of files for inspection
files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
done
# Case when particular audit rule isn't defined yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
files_to_inspect="/etc/audit/rules.d/$key.rules"
# If the $key.rules file doesn't exist yet, create it with correct permissions
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Escape slashes in path for use in sed pattern below
local esc_path=${path//$'/'/$'\/'}
# Define BRE whitespace class shortcut
local sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "$required_access_bits" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
fi
done
}
fix_audit_watch_rule "auditctl" "/var/log/wtmp" "wa" "session"
fix_audit_watch_rule "augenrules" "/var/log/wtmp" "wa" "session"
|
Ensure auditd Collects Information on Exporting to Media (successful)
[ref]ruleAt a minimum, the audit system should collect media exportation
events for all users and root. If the auditd daemon is configured to
use the augenrules program to read audit rules during daemon startup
(the default), add the following line to a file with suffix .rules in
the directory /etc/audit/rules.d , setting ARCH to either b32 or b64 as
appropriate for your system:
-a always,exit -F arch=ARCH -S mount -F auid>=1000 -F auid!=4294967295 -F key=export
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file, setting ARCH to either b32 or b64 as
appropriate for your system:
-a always,exit -F arch=ARCH -S mount -F auid>=1000 -F auid!=4294967295 -F key=export
Rationale:The unauthorized exportation of data to external media could result in an information leak
where classified information, Privacy Act information, and intellectual property could be lost. An audit
trail should be created each time a filesystem is mounted to help identify and guard against information
loss. Identifiers:
CCE-27447-2 References:
OL-07-030740, AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-3(1), AU-12(a), AU-12(c), IR-5, CCI-000135, CCI-002884, SRG-OS-000042-GPOS-00020, SRG-OS-000392-GPOS-00172, Req-10.2.7, 5.2.13, 5.4.1.1, 3.1.7 Remediation Shell script: (show)
# Perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
PATTERN="-a always,exit -F arch=$ARCH -S .* -F auid>=1000 -F auid!=4294967295 -k *"
GROUP="mount"
FULL_RULE="-a always,exit -F arch=$ARCH -S mount -F auid>=1000 -F auid!=4294967295 -k export"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
# https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool tool used to load audit rules,
# either 'auditctl', or 'augenrules
# * audit rules' pattern audit rule skeleton for same syscall
# * syscall group greatest common string this rule shares
# with other rules from the same group
# * architecture architecture this rule is intended for
# * full form of new rule to add expected full form of audit rule as to be
# added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
# See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {
# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"
# Check sanity of the input
if [ $# -ne "5" ]
then
echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect
retval=0
# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
# Extract audit $key from audit rule so we can use it later
key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
# Check if particular audit rule is already defined
IFS=$'\n' matches=($(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
if [ $? -ne 0 ]
then
retval=1
fi
# Reset IFS back to default
unset IFS
for match in "${matches[@]}"
do
files_to_inspect=("${files_to_inspect[@]}" "${match}")
done
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
files_to_inspect="/etc/audit/rules.d/$key.rules"
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that:
# * follow the rule pattern, and
# * meet the hardware architecture requirement, and
# * are current syscall group specific
IFS=$'\n' existing_rules=($(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d" "$audit_file"))
if [ $? -ne 0 ]
then
retval=1
fi
# Reset IFS back to default
unset IFS
# Process rules found case-by-case
for rule in "${existing_rules[@]}"
do
# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
if [ "${rule}" != "${full_rule}" ]
then
# If so, isolate just '(-S \w)+' substring of that rule
rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
# Check if list of '-S syscall' arguments of that rule is subset
# of '-S syscall' list of expected $full_rule
if grep -q -- "$rule_syscalls" <<< "$full_rule"
then
# Rule is covered (i.e. the list of -S syscalls for this rule is
# subset of -S syscalls of $full_rule => existing rule can be deleted
# Thus delete the rule from audit.rules & our array
sed -i -e "\;${rule};d" "$audit_file"
if [ $? -ne 0 ]
then
retval=1
fi
existing_rules=("${existing_rules[@]//$rule/}")
else
# Rule isn't covered by $full_rule - it besides -S syscall arguments
# for this group contains also -S syscall arguments for other syscall
# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
# since 'lchown' & 'fchownat' share 'chown' substring
# Therefore:
# * 1) delete the original rule from audit.rules
# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
# * 2) delete the -S syscall arguments for this syscall group, but
# keep those not belonging to this syscall group
# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
# * 3) append the modified (filtered) rule again into audit.rules
# if the same rule not already present
#
# 1) Delete the original rule
sed -i -e "\;${rule};d" "$audit_file"
if [ $? -ne 0 ]
then
retval=1
fi
# 2) Delete syscalls for this group, but keep those from other groups
# Convert current rule syscall's string into array splitting by '-S' delimiter
IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
# Reset IFS back to default
unset IFS
# Declare new empty string to hold '-S syscall' arguments from other groups
new_syscalls_for_rule=''
# Walk through existing '-S syscall' arguments
for syscall_arg in "${rule_syscalls_as_array[@]}"
do
# Skip empty $syscall_arg values
if [ "$syscall_arg" == '' ]
then
continue
fi
# If the '-S syscall' doesn't belong to current group add it to the new list
# (together with adding '-S' delimiter back for each of such item found)
if grep -q -v -- "$group" <<< "$syscall_arg"
then
new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
fi
done
# Replace original '-S syscall' list with the new one for this rule
updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
# Squeeze repeated whitespace characters in rule definition (if any) into one
updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
# 3) Append the modified / filtered rule again into audit.rules
# (but only in case it's not present yet to prevent duplicate definitions)
if ! grep -q -- "$updated_rule" "$audit_file"
then
echo "$updated_rule" >> "$audit_file"
fi
fi
else
# $audit_file already contains the expected rule form for this
# architecture & key => don't insert it second time
append_expected_rule=1
fi
done
# We deleted all rules that were subset of the expected one for this arch & key.
# Also isolated rules containing system calls not from this system calls group.
# Now append the expected rule if it's not present in $audit_file yet
if [[ ${append_expected_rule} -eq "0" ]]
then
echo "$full_rule" >> "$audit_file"
fi
done
return $retval
}
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
|
Ensure auditd Collects System Administrator Actions
[ref]ruleAt a minimum, the audit system should collect administrator actions
for all users and root. If the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the default),
add the following line to a file with suffix .rules in the directory
/etc/audit/rules.d :
-w /etc/sudoers -p wa -k actions
-w /etc/sudoers.d/ -p wa -k actions
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file:
-w /etc/sudoers -p wa -k actions
-w /etc/sudoers.d/ -p wa -k actions
Rationale:The actions taken by system administrators should be audited to keep a record
of what was executed on the system, as well as, for accountability purposes. Identifiers:
CCE-27461-3 References:
OL-07-030700, AC-2(7)(b), AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), iAU-3(1), AU-12(a), AU-12(c), IR-5, CCI-000126, CCI-000130, CCI-000135, CCI-000172, CCI-002884, Req-10.2.2, Req-10.2.5.b, SRG-OS-000037-GPOS-00015, SRG-OS-000042-GPOS-00020, SRG-OS-000392-GPOS-00172, SRG-OS-000462-GPOS-00206, SRG-OS-000471-GPOS-00215, 5.4.1.1, 3.1.7 Remediation Shell script: (show)
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix audit file system object watch rule for given path:
# * if rule exists, also verifies the -w bits match the requirements
# * if rule doesn't exist yet, appends expected rule form to $files_to_inspect
# audit rules file, depending on the tool which was used to load audit rules
#
# Expects four arguments (each of them is required) in the form of:
# * audit tool tool used to load audit rules,
# either 'auditctl', or 'augenrules'
# * path value of -w audit rule's argument
# * required access bits value of -p audit rule's argument
# * key value of -k audit rule's argument
#
# Example call:
#
# fix_audit_watch_rule "auditctl" "/etc/localtime" "wa" "audit_time_rules"
#
function fix_audit_watch_rule {
# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"
# Check sanity of the input
if [ $# -ne "4" ]
then
echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect
# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
# Get pair -- filepath : matching_row into @matches array
IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset IFS
# For each of the matched entries
for match in "${matches[@]}"
do
# Extract filepath from the match
rulesd_audit_file=$(echo $match | cut -f1 -d ':')
# Append that path into list of files for inspection
files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
done
# Case when particular audit rule isn't defined yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
files_to_inspect="/etc/audit/rules.d/$key.rules"
# If the $key.rules file doesn't exist yet, create it with correct permissions
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Escape slashes in path for use in sed pattern below
local esc_path=${path//$'/'/$'\/'}
# Define BRE whitespace class shortcut
local sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "$required_access_bits" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
fi
done
}
fix_audit_watch_rule "auditctl" "/etc/sudoers" "wa" "actions"
fix_audit_watch_rule "augenrules" "/etc/sudoers" "wa" "actions"
|
Make the auditd Configuration Immutable
[ref]ruleIf the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following line to a file with suffix .rules in the
directory /etc/audit/rules.d in order to make the auditd configuration
immutable:
-e 2
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file in order to make the auditd configuration
immutable:
-e 2
With this setting, a reboot will be required to change any audit rules.
Rationale:Making the audit configuration immutable prevents accidental as
well as malicious modification of the audit rules, although it may be
problematic if legitimate changes are needed during system
operation Identifiers:
CCE-27097-5 References:
AC-6, AU-1(b), AU-2(a), AU-2(c), AU-2(d), IR-5, Req-10.5.2, 4.1.18, 5.4.1.1, 3.3.1, 3.4.3 Remediation Shell script: (show)
# Traverse all of:
#
# /etc/audit/audit.rules, (for auditctl case)
# /etc/audit/rules.d/*.rules (for augenrules case)
#
# files to check if '-e .*' setting is present in that '*.rules' file already.
# If found, delete such occurrence since auditctl(8) manual page instructs the
# '-e 2' rule should be placed as the last rule in the configuration
find /etc/audit /etc/audit/rules.d -maxdepth 1 -type f -name *.rules -exec sed -i '/-e[[:space:]]\+.*/d' {} ';'
# Append '-e 2' requirement at the end of both:
# * /etc/audit/audit.rules file (for auditctl case)
# * /etc/audit/rules.d/immutable.rules (for augenrules case)
for AUDIT_FILE in "/etc/audit/audit.rules" "/etc/audit/rules.d/immutable.rules"
do
echo '' >> $AUDIT_FILE
echo '# Set the audit.rules configuration immutable per security requirements' >> $AUDIT_FILE
echo '# Reboot is required to change audit rules once this setting is applied' >> $AUDIT_FILE
echo '-e 2' >> $AUDIT_FILE
done
|
Enable auditd Service
[ref]ruleThe auditd service is an essential userspace component of
the Linux Auditing System, as it is responsible for writing audit records to
disk.
The auditd service can be enabled with the following command:
$ sudo systemctl enable auditd.service
Rationale:Without establishing what type of events occurred, it would be difficult
to establish, correlate, and investigate the events leading up to an outage or attack.
Ensuring the auditd service is active ensures audit records
generated by the kernel are appropriately recorded.
Additionally, a properly configured audit subsystem ensures that actions of
individual system users can be uniquely traced to those users so they
can be held accountable for their actions.
Identifiers:
CCE-27407-6 References:
OL-07-030000, AU-3, AC-17(1), AU-1(b), AU-10, AU-12(a), AU-12(c), AU-14(1), IR-5, CCI-000126, CCI-000131, SRG-OS-000038-GPOS-00016, SRG-OS-000039-GPOS-00017, SRG-OS-000042-GPOS-00021, SRG-OS-000254-GPOS-00095, SRG-OS-000255-GPOS-00096, Req-10, 4.1.2, 5.4.1.1, 3.3.1, 3.3.2, 3.3.6 Remediation Shell script: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Strategy: | enable |
---|
# Function to enable/disable and start/stop services on RHEL and Fedora systems.
#
# Example Call(s):
#
# service_command enable bluetooth
# service_command disable bluetooth.service
#
# Using xinetd:
# service_command disable rsh.socket xinetd=rsh
#
function service_command {
# Load function arguments into local variables
local service_state=$1
local service=$2
local xinetd=$(echo $3 | cut -d'=' -f2)
# Check sanity of the input
if [ $# -lt "2" ]
then
echo "Usage: service_command 'enable/disable' 'service_name.service'"
echo
echo "To enable or disable xinetd services add \'xinetd=service_name\'"
echo "as the last argument"
echo "Aborting."
exit 1
fi
# If systemctl is installed, use systemctl command; otherwise, use the service/chkconfig commands
if [ -f "/usr/bin/systemctl" ] ; then
service_util="/usr/bin/systemctl"
else
service_util="/sbin/service"
chkconfig_util="/sbin/chkconfig"
fi
# If disable is not specified in arg1, set variables to enable services.
# Otherwise, variables are to be set to disable services.
if [ "$service_state" != 'disable' ] ; then
service_state="enable"
service_operation="start"
chkconfig_state="on"
else
service_state="disable"
service_operation="stop"
chkconfig_state="off"
fi
# If chkconfig_util is not empty, use chkconfig/service commands.
if ! [ "x$chkconfig_util" = x ] ; then
$service_util $service $service_operation
$chkconfig_util --level 0123456 $service $chkconfig_state
else
$service_util $service_operation $service
$service_util $service_state $service
fi
# Test if local variable xinetd is empty using non-bashism.
# If empty, then xinetd is not being used.
if ! [ "x$xinetd" = x ] ; then
grep -qi disable /etc/xinetd.d/$xinetd && \
if ! [ "$service_operation" != 'disable' ] ; then
sed -i "s/disable.*/disable = no/gI" /etc/xinetd.d/$xinetd
else
sed -i "s/disable.*/disable = yes/gI" /etc/xinetd.d/$xinetd
fi
fi
}
service_command enable auditd
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Strategy: | enable |
---|
- name: Enable service auditd
service:
name="{{item}}"
enabled="yes"
state="started"
with_items:
- auditd
tags:
- service_auditd_enabled
- high_severity
- enable_strategy
- low_complexity
- low_disruption
- CCE-27407-6
- NIST-800-53-AU-3
- NIST-800-53-AC-17(1)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-10
- NIST-800-53-AU-12(a)
- NIST-800-53-AU-12(c)
- NIST-800-53-AU-14(1)
- NIST-800-53-IR-5
- NIST-800-171-3.3.1
- NIST-800-171-3.3.2
- NIST-800-171-3.3.6
- PCI-DSS-Req-10
- CJIS-5.4.1.1
- DISA-STIG-OL-07-030000
|
Enable Auditing for Processes Which Start Prior to the Audit Daemon
[ref]ruleTo ensure all processes can be audited, even those which start
prior to the audit daemon, add the argument audit=1 to the default
GRUB 2 command line for the Linux operating system in
/etc/default/grub , in the manner below:
GRUB_CMDLINE_LINUX="crashkernel=auto rd.lvm.lv=VolGroup/LogVol06 rd.lvm.lv=VolGroup/lv_swap rhgb quiet rd.shell=0 audit=1"
Warning:
The GRUB 2 configuration file, grub.cfg ,
is automatically updated each time a new kernel is installed. Note that any
changes to /etc/default/grub require rebuilding the grub.cfg
file. To update the GRUB 2 configuration file manually, use the
grub2-mkconfig -o command as follows:
Rationale:
Each process on the system carries an "auditable" flag which indicates whether
its activities can be audited. Although auditd takes care of enabling
this for all processes which launch after it does, adding the kernel argument
ensures it is set for every process during boot.
Identifiers:
CCE-27212-0 References:
AC-17(1), AU-14(1), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-10, IR-5, CCI-001464, CCI-000130, Req-10.3, 4.1.3, 5.4.1.1, 3.3.1 Remediation Shell script: (show)
# Correct the form of default kernel command line in /etc/default/grub
grep -q ^GRUB_CMDLINE_LINUX=\".*audit=0.*\" /etc/default/grub && \
sed -i "s/audit=[^[:space:]\+]/audit=1/g" /etc/default/grub
if ! [ $? -eq 0 ]; then
sed -i "s/\(GRUB_CMDLINE_LINUX=\)\"\(.*\)\"/\1\"\2 audit=1\"/" /etc/default/grub
fi
# Correct the form of kernel command line for each installed kernel
# in the bootloader
/sbin/grubby --update-kernel=ALL --args="audit=1"
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Reboot: | true |
---|
Strategy: | restrict |
---|
- name: "Enable Auditing for Processes Which Start Prior to the Audit Daemon"
shell: /sbin/grubby --update-kernel=ALL --args="audit=1"
tags:
- bootloader_audit_argument
- medium_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27212-0
- NIST-800-53-AC-17(1)
- NIST-800-53-AU-14(1)
- NIST-800-53-AU-1(b)
- NIST-800-53-AU-2(a)
- NIST-800-53-AU-2(c)
- NIST-800-53-AU-2(d)
- NIST-800-53-AU-10
- NIST-800-53-IR-5
- NIST-800-171-3.3.1
- PCI-DSS-Req-10.3
- CJIS-5.4.1.1
|
Services
[ref]group
The best protection against vulnerable software is running less software. This section describes how to review
the software which Oracle Linux 7 installs on a system and disable software which is not needed. It
then enumerates the software packages installed on a default Oracle Linux 7 system and provides guidance about which
ones can be safely disabled.
Oracle Linux 7 provides a convenient minimal install option that essentially installs the bare necessities for a functional
system. When building Oracle Linux 7 systems, it is highly recommended to select the minimal packages and then build up
the system from there.
|
contains 4 rules |
SSH Server
[ref]groupThe SSH protocol is recommended for remote login and
remote file transfer. SSH provides confidentiality and integrity
for data exchanged between two systems, as well as server
authentication, through the use of public key cryptography. The
implementation included with the system is called OpenSSH, and more
detailed documentation is available from its website,
http://www.openssh.org. Its server program
is called sshd and provided by the RPM package
openssh-server . |
contains 1 rule |
Configure OpenSSH Server if Necessary
[ref]groupIf the system needs to act as an SSH server, then
certain changes should be made to the OpenSSH daemon configuration
file /etc/ssh/sshd_config . The following recommendations can be
applied to this file. See the sshd_config(5) man page for more
detailed information. |
contains 1 rule |
Set SSH Idle Timeout Interval
[ref]ruleSSH allows administrators to set an idle timeout
interval.
After this interval has passed, the idle user will be
automatically logged out.
To set an idle timeout interval, edit the following line in /etc/ssh/sshd_config as
follows:
ClientAliveInterval interval
The timeout interval is given in seconds. To have a timeout
of 10 minutes, set interval to 600.
If a shorter timeout has already been set for the login shell, that value will
preempt any SSH setting made here. Keep in mind that some processes may stop SSH
from correctly detecting that the user is idle.
Rationale:
Terminating an idle ssh session within a short time period reduces the window of
opportunity for unauthorized personnel to take control of a management session
enabled on the console or console port that has been let unattended.
Identifiers:
CCE-27433-2 References:
OL-07-040320, AC-2(5), SA-8(i), AC-12, CCI-001133, CCI-002361, SRG-OS-000163-GPOS-00072, SRG-OS-000279-GPOS-00109, Req-8.1.8, 5.2.12, 5.5.6, 3.1.11 Remediation Shell script: (show)
sshd_idle_timeout_value="900"
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects four arguments:
#
# config_file: Configuration file that will be modified
# key: Configuration option to change
# value: Value of the configuration option to change
# cce: The CCE identifier or '@CCENUM@' if no CCE identifier exists
#
# Optional arugments:
#
# format: Optional argument to specify the format of how key/value should be
# modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
# With default format of 'key = value':
# replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
# With custom key/value format:
# replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
# With a variable:
# replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
local config_file=$1
local key=$2
local value=$3
local cce=$4
local format=$5
# Check sanity of the input
if [ $# -lt "3" ]
then
echo "Usage: replace_or_append 'config_file_location' 'key_to_search' 'new_value'"
echo
echo "If symlinks need to be taken into account, add yes/no to the last argument"
echo "to allow to 'follow_symlinks'."
echo "Aborting."
exit 1
fi
# Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
# Otherwise, regular sed command will do.
if test -L $config_file; then
sed_command="sed -i --follow-symlinks"
else
sed_command="sed -i"
fi
# Test that the cce arg is not empty or does not equal @CCENUM@.
# If @CCENUM@ exists, it means that there is no CCE assigned.
if ! [ "x$cce" = x ] && [ "$cce" != '@CCENUM@' ]; then
cce="CCE-${cce}"
else
cce="CCE"
fi
# Strip any search characters in the key arg so that the key can be replaced without
# adding any search characters to the config file.
stripped_key=$(sed "s/[\^=\$,;+]*//g" <<< $key)
# If there is no print format specified in the last arg, use the default format.
if ! [ "x$format" = x ] ; then
printf -v formatted_output "$format" "$stripped_key" "$value"
else
formatted_output="$stripped_key = $value"
fi
# If the key exists, change it. Otherwise, add it to the config_file.
if `grep -qi "$key" $config_file` ; then
eval '$sed_command "s/$key.*/$formatted_output/g" $config_file'
else
# \n is precaution for case where file ends without trailing newline
echo -e "\n# Per $cce: Set $formatted_output in $config_file" >> $config_file
echo -e "$formatted_output" >> $config_file
fi
}
replace_or_append '/etc/ssh/sshd_config' '^ClientAliveInterval' $sshd_idle_timeout_value 'CCE-27433-2' '%s %s'
Remediation Ansible snippet: (show)
Complexity: | low |
---|
Disruption: | low |
---|
Strategy: | restrict |
---|
- name: XCCDF Value sshd_idle_timeout_value # promote to variable
set_fact:
sshd_idle_timeout_value: 900
tags:
- always
- name: Set SSH Idle Timeout Interval
lineinfile:
create: yes
dest: /etc/ssh/sshd_config
regexp: ^ClientAliveInterval
line: "ClientAliveInterval {{ sshd_idle_timeout_value }}"
validate: sshd -t -f %s
#notify: restart sshd
tags:
- sshd_set_idle_timeout
- low_severity
- restrict_strategy
- low_complexity
- low_disruption
- CCE-27433-2
- NIST-800-53-AC-2(5)
- NIST-800-53-SA-8(i)
- NIST-800-53-AC-12
- NIST-800-171-3.1.11
- PCI-DSS-Req-8.1.8
- CJIS-5.5.6
- DISA-STIG-OL-07-040320
|
Network Time Protocol
[ref]groupThe Network Time Protocol is used to manage the system
clock over a network. Computer clocks are not very accurate, so
time will drift unpredictably on unmanaged systems. Central time
protocols can be used both to ensure that time is consistent among
a network of systems, and that their time is consistent with the
outside world.
If every system on a network reliably reports the same time, then it is much
easier to correlate log messages in case of an attack. In addition, a number of
cryptographic protocols (such as Kerberos) use timestamps to prevent certain
types of attacks. If your network does not have synchronized time, these
protocols may be unreliable or even unusable.
Depending on the specifics of the network, global time accuracy may be just as
important as local synchronization, or not very important at all. If your
network is connected to the Internet, using a public timeserver (or one
provided by your enterprise) provides globally accurate timestamps which may be
essential in investigating or responding to an attack which originated outside
of your network.
A typical network setup involves a small number of internal systems operating
as NTP servers, and the remainder obtaining time information from those
internal servers.
There is a choice between the daemons ntpd and chronyd , which
are available from the repositories in the ntp and chrony
packages respectively.
The default chronyd daemon can work well when external time references
are only intermittently accesible, can perform well even when the network is
congested for longer periods of time, can usually synchronize the clock faster
and with better time accuracy, and quickly adapts to sudden changes in the rate
of the clock, for example, due to changes in the temperature of the crystal
oscillator. Chronyd should be considered for all systems which are
frequently suspended or otherwise intermittently disconnected and reconnected
to a network. Mobile and virtual systems for example.
The ntpd NTP daemon fully supports NTP protocol version 4 (RFC 5905),
including broadcast, multicast, manycast clients and servers, and the orphan
mode. It also supports extra authentication schemes based on public-key
cryptography (RFC 5906). The NTP daemon (ntpd ) should be considered
for systems which are normally kept permanently on. Systems which are required
to use broadcast or multicast IP, or to perform authentication of packets with
the Autokey protocol, should consider using ntpd .
Refer to https://docs.oracle.com/cd/E52668_01/E54669/html/ol7-nettime.html for more detailed comparison of features of chronyd
and ntpd daemon features respectively, and for further guidance how to
choose between the two NTP daemons.
The upstream manual pages at http://chrony.tuxfamily.org/manual.html for
chronyd and http://www.ntp.org for ntpd provide additional
information on the capabilities and configuration of each of the NTP daemons.
|
contains 3 rules |
Enable the NTP Daemon
[ref]rule
The chronyd service can be enabled with the following command:
$ sudo systemctl enable chronyd.service
Note: The chronyd daemon is enabled by default.
The ntpd service can be enabled with the following command:
$ sudo systemctl enable ntpd.service
Note: The ntpd daemon is not enabled by default. Though as mentioned
in the previous sections in certain environments the ntpd daemon might
be preferred to be used rather than the chronyd one. Refer to:
https://docs.oracle.com/cd/E52668_01/E54669/html/ol7-nettime.html
for guidance which NTP daemon to choose depending on the environment used.
Rationale:Enabling some of chronyd or ntpd services ensures
that the NTP daemon will be running and that the system will synchronize its
time to any servers specified. This is important whether the system is
configured to be a client (and synchronize only its own clock) or it is also
acting as an NTP server to other systems. Synchronizing time is essential for
authentication services such as Kerberos, but it is also important for
maintaining accurate logs and auditing possible security breaches.
The chronyd and ntpd NTP daemons offer all of the
functionality of ntpdate , which is now deprecated. Additional
information on this is available at
http://support.ntp.org/bin/view/Dev/DeprecatingNtpdate Remediation Shell script: (show)
if ! `rpm -q --quiet chrony` && ! `rpm -q --quiet ntp-`; then
# Function to install or uninstall packages on RHEL and Fedora systems.
#
# Example Call(s):
#
# package_command install aide
# package_command remove telnet-server
#
function package_command {
# Load function arguments into local variables
local package_operation=$1
local package=$2
# Check sanity of the input
if [ $# -ne "2" ]
then
echo "Usage: package_command 'install/uninstall' 'rpm_package_name"
echo "Aborting."
exit 1
fi
# If dnf is installed, use dnf; otherwise, use yum
if [ -f "/usr/bin/dnf" ] ; then
install_util="/usr/bin/dnf"
else
install_util="/usr/bin/yum"
fi
if [ "$package_operation" != 'remove' ] ; then
# If the rpm is not installed, install the rpm
if ! /bin/rpm -q --quiet $package; then
$install_util -y $package_operation $package
fi
else
# If the rpm is installed, uninstall the rpm
if /bin/rpm -q --quiet $package; then
$install_util -y $package_operation $package
fi
fi
}
package_command install chrony
service_command enable chronyd
elif `rpm -q --quiet chrony`; then
if ! [ `/usr/sbin/pidof ntpd` ] ; then
# Function to enable/disable and start/stop services on RHEL and Fedora systems.
#
# Example Call(s):
#
# service_command enable bluetooth
# service_command disable bluetooth.service
#
# Using xinetd:
# service_command disable rsh.socket xinetd=rsh
#
function service_command {
# Load function arguments into local variables
local service_state=$1
local service=$2
local xinetd=$(echo $3 | cut -d'=' -f2)
# Check sanity of the input
if [ $# -lt "2" ]
then
echo "Usage: service_command 'enable/disable' 'service_name.service'"
echo
echo "To enable or disable xinetd services add \'xinetd=service_name\'"
echo "as the last argument"
echo "Aborting."
exit 1
fi
# If systemctl is installed, use systemctl command; otherwise, use the service/chkconfig commands
if [ -f "/usr/bin/systemctl" ] ; then
service_util="/usr/bin/systemctl"
else
service_util="/sbin/service"
chkconfig_util="/sbin/chkconfig"
fi
# If disable is not specified in arg1, set variables to enable services.
# Otherwise, variables are to be set to disable services.
if [ "$service_state" != 'disable' ] ; then
service_state="enable"
service_operation="start"
chkconfig_state="on"
else
service_state="disable"
service_operation="stop"
chkconfig_state="off"
fi
# If chkconfig_util is not empty, use chkconfig/service commands.
if ! [ "x$chkconfig_util" = x ] ; then
$service_util $service $service_operation
$chkconfig_util --level 0123456 $service $chkconfig_state
else
$service_util $service_operation $service
$service_util $service_state $service
fi
# Test if local variable xinetd is empty using non-bashism.
# If empty, then xinetd is not being used.
if ! [ "x$xinetd" = x ] ; then
grep -qi disable /etc/xinetd.d/$xinetd && \
if ! [ "$service_operation" != 'disable' ] ; then
sed -i "s/disable.*/disable = no/gI" /etc/xinetd.d/$xinetd
else
sed -i "s/disable.*/disable = yes/gI" /etc/xinetd.d/$xinetd
fi
fi
}
service_command enable chronyd
fi
else
# Function to enable/disable and start/stop services on RHEL and Fedora systems.
#
# Example Call(s):
#
# service_command enable bluetooth
# service_command disable bluetooth.service
#
# Using xinetd:
# service_command disable rsh.socket xinetd=rsh
#
function service_command {
# Load function arguments into local variables
local service_state=$1
local service=$2
local xinetd=$(echo $3 | cut -d'=' -f2)
# Check sanity of the input
if [ $# -lt "2" ]
then
echo "Usage: service_command 'enable/disable' 'service_name.service'"
echo
echo "To enable or disable xinetd services add \'xinetd=service_name\'"
echo "as the last argument"
echo "Aborting."
exit 1
fi
# If systemctl is installed, use systemctl command; otherwise, use the service/chkconfig commands
if [ -f "/usr/bin/systemctl" ] ; then
service_util="/usr/bin/systemctl"
else
service_util="/sbin/service"
chkconfig_util="/sbin/chkconfig"
fi
# If disable is not specified in arg1, set variables to enable services.
# Otherwise, variables are to be set to disable services.
if [ "$service_state" != 'disable' ] ; then
service_state="enable"
service_operation="start"
chkconfig_state="on"
else
service_state="disable"
service_operation="stop"
chkconfig_state="off"
fi
# If chkconfig_util is not empty, use chkconfig/service commands.
if ! [ "x$chkconfig_util" = x ] ; then
$service_util $service $service_operation
$chkconfig_util --level 0123456 $service $chkconfig_state
else
$service_util $service_operation $service
$service_util $service_state $service
fi
# Test if local variable xinetd is empty using non-bashism.
# If empty, then xinetd is not being used.
if ! [ "x$xinetd" = x ] ; then
grep -qi disable /etc/xinetd.d/$xinetd && \
if ! [ "$service_operation" != 'disable' ] ; then
sed -i "s/disable.*/disable = no/gI" /etc/xinetd.d/$xinetd
else
sed -i "s/disable.*/disable = yes/gI" /etc/xinetd.d/$xinetd
fi
fi
}
service_command enable ntpd
fi
|
Specify a Remote NTP Server
[ref]ruleDepending on specific functional requirements of a concrete
production environment, the Oracle Linux 7 Server system can be
configured to utilize the services of the chronyd NTP daemon (the
default), or services of the ntpd NTP daemon. Refer to
https://docs.oracle.com/cd/E52668_01/E54669/html/ol7-nettime.html
for more detailed comparison of the features of both of the choices, and for
further guidance how to choose between the two NTP daemons.
To specify a remote NTP server for time synchronization, perform the following:
- if the system is configured to use the
chronyd as the NTP daemon (the
default), edit the file /etc/chrony.conf as follows, - if the system is configured to use the
ntpd as the NTP daemon,
edit the file /etc/ntp.conf as documented below.
Add or correct the following lines, substituting the IP or hostname of a remote
NTP server for ntpserver:
server ntpserver
This instructs the NTP software to contact that remote server to obtain time
data.
Rationale:Synchronizing with an NTP server makes it possible to collate system
logs from multiple sources or correlate computer events with real time events.
Remediation Shell script: (show)
var_multiple_time_servers="0.rhel.pool.ntp.org,1.rhel.pool.ntp.org,2.rhel.pool.ntp.org,3.rhel.pool.ntp.org"
if ! `/usr/sbin/pidof ntpd`; then
if ! `grep -q ^server /etc/chrony.conf` ; then
if ! `grep -q '#[[:space:]]*server' /etc/chrony.conf` ; then
for i in `echo "$var_multiple_time_servers" | tr ',' '\n'` ; do
echo -ne "\nserver $i iburst" >> /etc/chrony.conf
done
else
sed -i 's/#[ ]*server/server/g' /etc/chrony.conf
fi
fi
else
if ! `grep -q ^server /etc/ntp.conf` ; then
if ! `grep -q '#[[:space:]]*server' /etc/ntp.conf` ; then
for i in `echo "$var_multiple_time_servers" | tr ',' '\n'` ; do
echo -ne "\nserver $i iburst" >> /etc/ntp.conf
done
else
sed -i 's/#[ ]*server/server/g' /etc/ntp.conf
fi
fi
fi
|
Specify Additional Remote NTP Servers
[ref]ruleDepending on specific functional requirements of a concrete
production environment, the Oracle Linux 7 Server system can be
configured to utilize the services of the chronyd NTP daemon (the
default), or services of the ntpd NTP daemon. Refer to
https://docs.oracle.com/cd/E52668_01/E54669/html/ol7-nettime.html
for more detailed comparison of the features of both of the choices, and for
further guidance how to choose between the two NTP daemons.
Additional NTP servers can be specified for time synchronization. To do so,
perform the following:
- if the system is configured to use the
chronyd as the NTP daemon
(the default), edit the file /etc/chrony.conf as follows, - if the system is configured to use the
ntpd as the NTP daemon,
edit the file /etc/ntp.conf as documented below.
Add additional lines of the following form, substituting the IP address or
hostname of a remote NTP server for ntpserver:
server ntpserver
Rationale:Specifying additional NTP servers increases the availability of
accurate time data, in the event that one of the specified servers becomes
unavailable. This is typical for a system acting as an NTP server for
other systems.
Remediation Shell script: (show)
var_multiple_time_servers="0.rhel.pool.ntp.org,1.rhel.pool.ntp.org,2.rhel.pool.ntp.org,3.rhel.pool.ntp.org"
if ! `/usr/sbin/pidof ntpd`; then
if [ `grep -c '^server' /etc/chrony.conf` -lt 2 ]; then
if ! `grep -q '#[[:space:]]*server' /etc/chrony.conf` ; then
for i in `echo "$var_multiple_time_servers" | tr ',' '\n'` ; do
echo -ne "\nserver $i iburst" >> /etc/chrony.conf
done
else
sed -i 's/#[ ]*server/server/g' /etc/chrony.conf
fi
fi
else
if [ `grep -c '^server' /etc/ntp.conf` -lt 2 ]; then
if ! `grep -q '#[[:space:]]*server' /etc/ntp.conf` ; then
for i in `echo "$var_multiple_time_servers" | tr ',' '\n'` ; do
echo -ne "\nserver $i iburst" >> /etc/ntp.conf
done
else
sed -i 's/#[ ]*server/server/g' /etc/ntp.conf
fi
fi
fi
|