cppad
  • Table of Contents
  • user_guide
    • Install
    • Theory
    • AD
    • ADFun
    • preprocessor
    • multi_thread
    • utility
    • ipopt_solve
    • Example
    • speed
      • speed_main
      • speed_utility
        • det_by_lu
        • det_of_minor
        • det_by_minor
        • det_33
        • det_grad_33
        • mat_sum_sq
        • ode_evaluate
        • sparse_jac_fun
        • sparse_hes_fun
        • uniform_01
      • speed_double
      • speed_adolc
      • speed_cppad
      • speed_fadbad
      • speed_cppad_jit
      • speed_cppadcg
      • speed_sacado
      • speed_xpackage
  • appendix
  • Index
  • Search
cppad
  • »
  • user_guide »
  • speed »
  • speed_utility
  • View page source

\(\newcommand{\W}[1]{ \; #1 \; }\) \(\newcommand{\R}[1]{ {\rm #1} }\) \(\newcommand{\B}[1]{ {\bf #1} }\) \(\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }\) \(\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }\) \(\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }\) \(\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }\)

speed_utility¶

Speed Testing Utilities¶

  • Speed Main Program

  • Speed Utility Routines

  • Library Routines

  • Source Code

Speed Main Program¶

speed_main

Running the Speed Test Program

Speed Utility Routines¶

det_by_lu

Determinant Using Expansion by Lu Factorization

det_by_minor

Determinant Using Expansion by Minors

det_of_minor

Determinant of a Minor

det_33

Check Determinant of 3 by 3 matrix

det_grad_33

Check Gradient of Determinant of 3 by 3 matrix

mat_sum_sq

Sum Elements of a Matrix Times Itself

ode_evaluate

Evaluate a Function Defined in Terms of an ODE

sparse_jac_fun

Evaluate a Function That Has a Sparse Jacobian

sparse_hes_fun

Evaluate a Function That Has a Sparse Hessian

uniform_01

Simulate a [0,1] Uniform Random Variate

Library Routines¶

LuFactor

LU Factorization of A Square Matrix

LuInvert

Invert an LU Factored Equation

LuSolve

Compute Determinant and Solve Linear Equations

Poly

Evaluate a Polynomial or its Derivative

Source Code¶

det_by_lu.hpp

Source: det_by_lu

det_by_minor.hpp

Source: det_by_minor

det_grad_33.hpp

Source: det_grad_33

det_of_minor.hpp

Source: det_of_minor

lu_factor.hpp

Source: LuFactor

lu_invert.hpp

Source: LuInvert

lu_solve.hpp

Source: LuSolve

mat_sum_sq.hpp

Source: mat_sum_sq

poly.hpp

Source: Poly

sparse_jac_fun.hpp

Source: sparse_jac_fun

sparse_hes_fun.hpp

Source: sparse_hes_fun

uniform_01.hpp

Source: uniform_01

Next Previous

© Copyright .

Built with Sphinx using a theme provided by Read the Docs.