opentracing-python
Release 1.2

The OpenTracing Authors

Apr 22, 2022

CONTENTS

Required Reading 3
Status 5
Usage 7
3.1 Inboundrequest e e e e 7
Outbound request 9
4.1 Scope and within-process propagationl e 10
4.2 SCOPe MANAZEIS . .+« ¢ v v e e e e e e e e e e e e e e e e e e e 10
Development 13
5.1 Tests o o o e e e e e e e e e 13
52 Testbed suite e e e e e e 13
Instrumentation Tests 15
6.1 Documentation e e e e e e e e e 15
6.2 LICENSE 15
6.3 Releases e 15

opentracing-python, Release 1.2

This library is a Python platform API for OpenTracing.

CONTENTS 1

https://gitter.im/opentracing/public
https://travis-ci.org/opentracing/opentracing-python
https://badge.fury.io/py/opentracing
https://opentracing-python.readthedocs.io/en/latest/?badge=latest

opentracing-python, Release 1.2

2 CONTENTS

CHAPTER
ONE

REQUIRED READING

In order to understand the Python platform API, one must first be familiar with the OpenTracing project and terminol-
ogy more specifically.

http://opentracing.io
http://opentracing.io/documentation/pages/spec.html
http://opentracing.io/documentation/pages/spec.html

opentracing-python, Release 1.2

4 Chapter 1. Required Reading

CHAPTER
TWO

STATUS

In the current version, opent racing-python provides only the API and a basic no-op implementation that can be
used by instrumentation libraries to collect and propagate distributed tracing context.

Future versions will include a reference implementation utilizing an abstract Recorder interface, as well as a Zipkin-
compatible Tracer.

http://openzipkin.github.io

opentracing-python, Release 1.2

6 Chapter 2. Status

CHAPTER
THREE

The work of instrumentation libraries generally consists of three steps:

USAGE

1. When a service receives a new request (over HTTP or some other protocol), it uses OpenTracing’s inject/extract
API to continue an active trace, creating a Span object in the process. If the request does not contain an active

trace, the service starts a new trace and a new root Span.

The service needs to store the current Span in some request-local storage, (called Span activation) where it
can be retrieved from when a child Span must be created, e.g. in case of the service making an RPC to another

service.

. When making outbound calls to another service, the current Span must be retrieved from request-local storage,

a child span must be created (e.g., by using the start_child_span () helper), and that child span must be
embedded into the outbound request (e.g., using HTTP headers) via OpenTracing’s inject/extract APIL.

Below are the code examples for the previously mentioned steps. Implementation of request-local storage needed for
step 2 is specific to the service and/or frameworks / instrumentation libraries it is using, exposed as a ScopeManager
child contained as Tracer.scope_manager. See details below.

3.1 Inbound request

Somewhere in your server’s request handler code:

def handle_request (request) :

def

span = before_request (request, opentracing.global_tracer())
store span in some request-local storage using Tracer.scope_manager,
using the returned “Scope’ as Context Manager to ensure
“Span’ will be cleared and (in this case) “Span.finish() be called.
with tracer.scope_manager.activate (span, True) as scope:

actual business logic

handle_request_for_real (request)

before_request (request, tracer):

span_context = tracer.extract (
format=Format .HTTP_HEADERS,
carrier=request.headers,

)

span = tracer.start_span(
operation_name=request.operation,
child_of=span_context)

span.set_tag('http.url', request.full_url)

(continues on next page)

opentracing-python, Release

1.2

(continued from previous page)

remote_ip = request.remote_ip

if remote_ip:
span.set_tag(tags.

caller_name = request.
if caller_name:
span.set_tag(tags.

remote_port = request.
if remote_port:

span.set_tag(tags.

return span

PEER_HOST_IPV4, remote_ip)
caller_name
PEER_SERVICE, caller_name)
remote_port

PEER_PORT, remote_port)

Chapter 3. Usage

CHAPTER
FOUR

OUTBOUND REQUEST

Somewhere in your service that’s about to make an outgoing call:

from opentracing import tags
from opentracing.propagation import Format
from opentracing instrumentation import request_context

create and serialize a child span and use it as context manager
with before_http_request (

def

request=out_request,
current_span_extractor=request_context.get_current_span):

actual call
return urllib2.urlopen (request)

before_http_request (request, current_span_extractor):
op = request.operation

parent_span = current_span_extractor ()

outbound_span = opentracing.global_tracer () .start_span(

operation_name=op,
child_of=parent_span

outbound_span.set_tag('http.url', request.full_url)
service_name = request.service_name
host, port = request.host_port
if service_name:

outbound_span.set_tag(tags.PEER_SERVICE, service_name)
if host:

outbound_span.set_tag(tags.PEER_HOST_IPV4, host)
if port:

outbound_span.set_tag(tags.PEER_PORT, port)

http_header_carrier = {}

opentracing.global_tracer () .inject (
span_context=outbound_span,
format=Format .HTTP_HEADERS,
carrier=http_header_carrier)

for key, value in http_header_carrier.iteritems():
request.add_header (key, value)

return outbound_span

opentracing-python, Release 1.2

4.1 Scope and within-process propagation

For getting/setting the current active Span in the used request-local storage, OpenTracing requires that every Tracer
contains a ScopeManager that grants access to the active Span through a Scope. Any Span may be transferred
to another task or thread, but not Scope.

Access to the active span is straightforward.
scope = tracer.scope_manager.active ()
if scope is not None:

scope.span.set_tag('...", '...")

The common case starts a Scope that’s automatically registered for intra-process propagation via ScopeManager.

Note that start_active_span('...') automatically finishes the span on Scope.close /()
(start_active_span('...', finish_on_close=False) does not finish it, in contrast).

Manual activation of the Span.

span = tracer.start_span (operation_name='someWork")

with tracer.scope_manager.activate (span, True) as scope:
Do things.

Automatic activation of the Span.

finish on _close 1is a required parameter.

with tracer.start_active_span('someWork', finish_on_close=True) as scope:
Do things.

Handling done through a try construct:

span = tracer.start_span (operation_name='someWork")
scope = tracer.scope_manager.activate (span, True)
try:

Do things.
except Exception as e:
span.set_tag('error', '...")
finally:
scope.close ()

If there is a Scope, it will act as the parent to any newly started Span unless the programmer passes
ignore_active_span=True at start_span ()/start_active_span () time or specified parent context
explicitly:

scope = tracer.start_active_span('someWork', ignore_active_span=True)

Each service/framework ought to provide a specific ScopeManager implementation that relies on their own request-
local storage (thread-local storage, or coroutine-based storage for asynchronous frameworks, for example).

4.2 Scope managers

This project includes a set of ScopeManager implementations under the opentracing.scope_managers
submodule, which can be imported on demand:

’from opentracing.scope_managers import ThreadLocalScopeManager

There exist implementations for thread-local (the default instance of the submodule opentracing.
scope_managers), gevent, Tornado, asyncio and contextvars:

10 Chapter 4. Outbound request

opentracing-python, Release 1.2

from opentracing.scope_managers.gevent import GeventScopeManager # requires gevent
from opentracing.scope_managers.tornado import TornadoScopeManager # requires tornado
<6

from opentracing.scope_managers.asyncio import AsyncioScopeManager # fits for old,
—asyncio applications, requires Python 3.4 or newer.

from opentracing.scope_managers.contextvars import ContextVarsScopeManager # for,
—asyncio applications, requires Python 3.7 or newer.

Note that for asyncio applications it’s preferable to use ContextVarsScopeManager instead of
AsyncioScopeManager because of automatic parent span propagation to children coroutines, tasks or scheduled
callbacks.

4.2. Scope managers 11

opentracing-python, Release 1.2

12 Chapter 4. Outbound request

CHAPTER
FIVE

DEVELOPMENT

5.1 Tests

virtualenv env
./env/bin/activate

make bootstrap

make test

You can use tox to run tests as well.

’tox

5.2 Testbed suite

A testbed suite designed to test API changes and experimental features is included under the testbed directory. For
more information, see the Testbed README.

13

https://tox.readthedocs.io
testbed/README.md

opentracing-python, Release 1.2

14 Chapter 5. Development

CHAPTER
SIX

INSTRUMENTATION TESTS

This project has a working design of interfaces for the OpenTracing API. There is a MockTracer to facilitate unit-

testing of OpenTracing Python instrumentation.

from opentracing.mocktracer import MockTracer

tracer = MockTracer ()
with tracer.start_span('someWork') as span:

pass
spans = tracer.finished_spans|()
someWorkSpan = spans[0]

6.1 Documentation

virtualenv env
./env/bin/activate

make bootstrap

make docs

The documentation is written to docs/_build/html.

6.2 LICENSE

Apache 2.0 License.

6.3 Releases

Before new release, add a summary of changes since last version to CHANGELOG.rst

pip install zest.releaser|[recommended]

prerelease

release

git push origin master —--follow-tags

python setup.py sdist upload -r pypi upload_docs -r pypi
postrelease

git push

15

opentracing-python, Release 1.2

6.3.1 Python API

Classes

Utility Functions
Exceptions
MockTracer

Scope managers

6.3.2 History

2.4.0 (2020-11-19)

* Use current_task from asyncio module for Python 3.9 compatibility (#138) <Michael Tannenbaum>

* Drop build support for Python 3.5 (#138) <Michael Tannenbaum>

2.3.0 (2020-01-02)

* Add AsyncioScopeManager based on contextvars and supporting Tornado 6 (#118) <Vasilii Novikov>

2.2.0 (2019-05-10)

 Fix __exit__ method of Scope class (#120) <Aliaksei Urbanski>
* Add support for Python 3.5/3.7 and fix tests (#121) <Aliaksei Urbanski>

2.1.0 (2019-04-27)

* Add support for indicating if a global tracer has been registered (#109) <Mike Goldsmith>
» Use pytest-cov==2.6.0 as 2.6.1 depends on pytest>=3.6.0 (#113) <Carlos Alberto Cortez>

 Better error handling in context managers for Span/Scope. (#101) <Carlos Alberto Cortez>
* Add log fields constants to opentracing.logs. (#99) <Carlos Alberto Cortez>

* Move opentracing.ext.tags to opentracing.tags. (#103) <Carlos Alberto Cortez>

* Add SERVICE tag (#100) <Carlos Alberto Cortez>

* Fix unclosed active scope in tests (#97) <Michat Szymariski>

* Initial implementation of a global Tracer. (#95) <Carlos Alberto Cortez>

16 Chapter 6. Instrumentation Tests

opentracing-python, Release 1.2

2.0.0 (2018-07-10)

» Implement ScopeManager for in-process propagation.

Added a set of default ScopeManager implementations.

Added testbed/ for testing API changes.

* Added MockTracer for instrumentation testing.

1.3.0 (2018-01-14)

Added sphinx-generated documentation.

* Remove ‘futures’ from install_requires (#62)

* Add a harness check for unicode keys and vals (#40)
* Have the harness try all tag value types (#39)

1.2.2 (2016-10-03)

* Fix KeyError when checking kwargs for optional values

1.2.1 (2016-09-22)

* Make Span.log(self, **kwargs) smarter

1.2.0 (2016-09-21)

* Add Span.log_kv and deprecate older logging methods

1.1.0 (2016-08-06)
* Move set/get_baggage back to Span; add SpanContext.baggage
* Raise exception on unknown format

2.0.0.dev3 (2016-07-26)

* Support SpanContext

2.0.0.dev1 (2016-07-12)

¢ Rename ChildOf/FollowsFrom to child_of/follows_from
* Rename span_context to referee in Reference

e Document expected behavior when referee=None

6.3. Releases

17

opentracing-python, Release 1.2

2.0.0.dev0 (2016-07-11)

* Support SpanContext (and real semvers)

1.0rc4 (2016-05-21)

* Add standard tags per http://opentracing.io/data-semantics/

1.0rc3 (2016-03-22)

* No changes yet

1.0rc3 (2016-03-22)

* Move to simpler carrier formats

1.0rc2 (2016-03-11)

* Remove the Injector/Extractor layer

1.0rc1 (2016-02-24)

» Upgrade to 1.0 RC specification

0.6.3 (2016-01-16)

* Rename repository back to opentracing-python

0.6.2 (2016-01-15)

* Validate chaining of logging calls

0.6.1 (2016-01-09)

* Fix typo in the attributes API test

0.6.0 (2016-01-09)

¢ Change inheritance to match api-go: TraceContextSource extends codecs, Tracer extends TraceContextSource

¢ Create API harness

18 Chapter 6. Instrumentation Tests

http://opentracing.io/data-semantics/

opentracing-python, Release 1.2

0.5.2 (2016-01-08)

* Update README and meta.

0.5.1 (2016-01-08)

¢ Prepare for PYPI publishing.

0.5.0 (2016-01-07)

* Remove debug flag
* Allow passing tags to start methods
* Add Span.add_tags() method

0.4.2 (2016-01-07)

* Add SPAN_KIND tag

0.4.0 (2016-01-06)

¢ Rename marshal -> encode

0.3.1 (2015-12-30)

* Fix std context implementation to refer to Trace Attributes instead of metadata

0.3.0 (2015-12-29)

* Rename trace tags to Trace Attributes. Rename RPC tags to PEER. Add README.

0.2.0 (2015-12-28)

» Export global tracer variable.

0.1.4 (2015-12-28)

* Rename RPC_SERVICE tag to make it symmetric

6.3. Releases

19

opentracing-python, Release 1.2

0.1.3 (2015-12-27)

» Allow repeated keys for span tags; add standard tag names for RPC

0.1.2 (2015-12-27)

¢ Move creation of child context to TraceContextSource

0.1.1 (2015-12-27)

¢ Add log methods

0.1.0 (2015-12-27)

* Initial public API

20 Chapter 6. Instrumentation Tests

	Required Reading
	Status
	Usage
	Inbound request

	Outbound request
	Scope and within-process propagation
	Scope managers

	Development
	Tests
	Testbed suite

	Instrumentation Tests
	Documentation
	LICENSE
	Releases

