
plac

Michele Simionato

Sep 19, 2023

CONTENTS

1 For the impatient 3

2 The importance of scaling down 5

3 Scripts with required arguments 7

4 Scripts with default arguments 9

5 Scripts with options (and smart options) 13

6 Scripts with flags 17

7 plac for Python 2.X users 19

8 More features 21

9 What to do if an argument name clashes with a Python builtin/keyword? 25

10 Keyword arguments 27

11 plac vs argparse 29

12 Final example: a shelve interface 31

13 plac vs the rest of the world 35

14 The future 37

15 Trivia: the story behind the name 39

16 Advanced usages of plac 41
16.1 Introduction . 41
16.2 From scripts to interactive applications . 41
16.3 Testing a plac application . 42
16.4 Plac easy tests . 43
16.5 Plac batch scripts . 44
16.6 Implementing subcommands . 45
16.7 plac.Interpreter.call . 48
16.8 Readline support . 49
16.9 The plac runner . 50
16.10 A non class-based example . 52
16.11 Writing your own plac runner . 54

i

16.12 Long running commands . 55
16.13 Threaded commands . 56
16.14 Running commands as external processes . 58
16.15 Managing the output of concurrent commands . 58

17 Experimental features 61
17.1 Parallel computing with plac . 61
17.2 Monitor support . 63
17.3 The plac server . 64
17.4 Summary . 65
17.5 Appendix: custom annotation objects . 65

ii

plac

Author Michele Simionato

E-mail michele.simionato@gmail.com

Version 1.3.4

Date December 2021

Download page https://pypi.org/project/plac/

Project page https://github.com/ialbert/plac

Requires Python from 2.6 up

Installation pip install plac

License BSD license

Contents

• Plac: Parsing the Command Line the Easy Way

– For the impatient

– The importance of scaling down

– Scripts with required arguments

– Scripts with default arguments

– Scripts with options (and smart options)

– Scripts with flags

– plac for Python 2.X users

– More features

– What to do if an argument name clashes with a Python builtin/keyword?

– Keyword arguments

– plac vs argparse

– Final example: a shelve interface

– plac vs the rest of the world

– The future

– Trivia: the story behind the name

• Advanced usages of plac

– Introduction

– From scripts to interactive applications

– Testing a plac application

– Plac easy tests

– Plac batch scripts

– Implementing subcommands

– plac.Interpreter.call

– Readline support

CONTENTS 1

mailto:michele.simionato@gmail.com
https://pypi.org/project/plac/
https://github.com/ialbert/plac

plac

– The plac runner

– A non class-based example

– Writing your own plac runner

– Long running commands

– Threaded commands

– Running commands as external processes

– Managing the output of concurrent commands

• Experimental features

– Parallel computing with plac

– Monitor support

– The plac server

– Summary

– Appendix: custom annotation objects

2 CONTENTS

CHAPTER

ONE

FOR THE IMPATIENT

Here is how you would write a command-line script with plac, taken from a real life machine learning script that I
found on the net:

import plac
try:

from pathlib import Path
except ImportError: # in Python 2.7

Path = str

@plac.pos('model', "Model name", choices=['A', 'B', 'C'])
@plac.opt('output_dir', "Optional output directory", type=Path)
@plac.opt('n_iter', "Number of training iterations", type=int)
@plac.flg('debug', "Enable debug mode")
def main(model, output_dir='.', n_iter=100, debug=False):

"""A script for machine learning"""

if __name__ == '__main__':
plac.call(main)

Running the script with $ python example_all.py -h will give you the following help message:

usage: example_all.py [-h] [-o .] [-n 100] [-d] {A,B,C}

A script for machine learning

positional arguments:
{A,B,C} Model name

options:
-h, --help show this help message and exit
-o ., --output-dir . Optional output directory
-n 100, --n-iter 100 Number of training iterations
-d, --debug Enable debug mode

The patient readers will find all the explanations in the sections below.

3

plac

4 Chapter 1. For the impatient

CHAPTER

TWO

THE IMPORTANCE OF SCALING DOWN

There is no want of command-line arguments parsers in the Python world. The standard library alone contains three
different modules: getopt (from the stone age), optparse (from Python 2.3) and argparse (from Python 2.7). All of
them are quite powerful and especially argparse is an industrial strength solution; unfortunately, all of them feature a
non-negligible learning curve and a certain verbosity. They do not scale down well enough, at least in my opinion.

It should not be necessary to stress the importance of scaling down; nevertheless, a lot of people are obsessed with
features and concerned with the possibility of scaling up, forgetting the equally important issue of scaling down. This
is an old meme in the computing world: programs should address the common cases simply and simple things should
be kept simple, while at the same time keeping difficult things possible. plac adhere as much as possible to this
philosophy and it is designed to handle well the simple cases, while retaining the ability to handle complex cases by
relying on the underlying power of argparse.

Technically plac is just a simple wrapper over argparse which hides most of its complexity by using a declarative
interface: the argument parser is inferred rather than written down by imperatively. Still, plac is surprisingly scalable
upwards, even without using the underlying argparse. I have been using Python for 9 years and in my experience it is
extremely unlikely that you will ever need to go beyond the features provided by the declarative interface of plac: they
should be more than enough for 99.9% of the use cases.

plac is targeting especially unsophisticated users, programmers, sys-admins, scientists and in general people writing
throw-away scripts for themselves, choosing the command-line interface because it is quick and simple. Such users
are not interested in features, they are interested in a small learning curve: they just want to be able to write a simple
command line tool from a simple specification, not to build a command-line parser by hand. Unfortunately, the
modules in the standard library forces them to go the hard way. They are designed to implement power user tools and
they have a non-trivial learning curve. On the contrary, plac is designed to be simple to use and extremely concise, as
the examples below will show.

5

https://docs.python.org/library/getopt.html
https://docs.python.org/library/optparse.html
https://docs.python.org/library/argparse.html
https://docs.python.org/library/argparse.html
https://www.welton.it/articles/scalable_systems.html
https://pypi.org/project/plac/
https://docs.python.org/library/argparse.html
https://pypi.org/project/plac/
https://docs.python.org/library/argparse.html
https://pypi.org/project/plac/
https://docs.python.org/library/argparse.html
https://pypi.org/project/plac/
https://pypi.org/project/plac/
https://pypi.org/project/plac/

plac

6 Chapter 2. The importance of scaling down

CHAPTER

THREE

SCRIPTS WITH REQUIRED ARGUMENTS

Let me start with the simplest possible thing: a script that takes a single argument and does something to it. It cannot
get simpler than that, unless you consider the case of a script without command-line arguments, where there is nothing
to parse. Still, it is a use case extremely common: I need to write scripts like that nearly every day, I wrote hundreds of
them in the last few years and I have never been happy. Here is a typical example of code I have been writing by hand
for years:

example1.py
def main(dsn):

"Do something with the database"
print("ok")

if __name__ == '__main__':
import sys
n = len(sys.argv[1:])
if n == 0:

sys.exit('usage: python %s dsn' % sys.argv[0])
elif n == 1:

main(sys.argv[1])
else:

sys.exit('Unrecognized arguments: %s' % ' '.join(sys.argv[2:]))

As you see the whole if __name__ == '__main__' block (nine lines) is essentially boilerplate that should
not exist. Actually I think the language should recognize the main function and pass the command-line arguments
automatically; unfortunately this is unlikely to happen. I have been writing boilerplate like this in hundreds of scripts
for years, and every time I hate it. The purpose of using a scripting language is convenience and trivial things should
be trivial. Unfortunately the standard library does not help for this incredibly common use case. Using getopt and
optparse does not help, since they are intended to manage options and not positional arguments; the argparse module
helps a bit and it is able to reduce the boilerplate from nine lines to six lines:

example2.py
def main(dsn):

"Do something on the database"
print(dsn)
...

if __name__ == '__main__':
import argparse
p = argparse.ArgumentParser()
p.add_argument('dsn')
arg = p.parse_args()
main(arg.dsn)

However, it just feels too complex to instantiate a class and to define a parser by hand for such a trivial task.

7

https://docs.python.org/library/getopt.html
https://docs.python.org/library/optparse.html
https://docs.python.org/library/argparse.html

plac

The plac module is designed to manage well such use cases, and it is able to reduce the original nine lines of boiler
plate to two lines. With the plac module all you need to write is

example3.py
def main(dsn):

"Do something with the database"
print(dsn)
...

if __name__ == '__main__':
import plac; plac.call(main)

The plac module provides for free (actually the work is done by the underlying argparse module) a nice usage message:

$ python example3.py -h

usage: example3.py [-h] dsn

Do something with the database

positional arguments:
dsn

options:
-h, --help show this help message and exit

Moreover plac manages the case of missing arguments and of too many arguments. This is only the tip of the iceberg:
plac is able to do much more than that.

8 Chapter 3. Scripts with required arguments

https://pypi.org/project/plac/
https://pypi.org/project/plac/
https://pypi.org/project/plac/
https://docs.python.org/library/argparse.html
https://pypi.org/project/plac/
https://pypi.org/project/plac/

CHAPTER

FOUR

SCRIPTS WITH DEFAULT ARGUMENTS

The need to have suitable defaults for command-line scripts is quite common. For instance I have encountered this use
case at work hundreds of times:

example4.py
from datetime import datetime

def main(dsn, table='product', today=datetime.today()):
"Do something on the database"
print(dsn, table, today)

if __name__ == '__main__': # manual management before argparse
import sys
args = sys.argv[1:]
if not args:

sys.exit('usage: python %s dsn' % sys.argv[0])
elif len(args) > 2:

sys.exit('Unrecognized arguments: %s' % ' '.join(argv[2:]))
main(*args)

Here I want to perform a query on a database table, by extracting the most recent data: it makes sense for today to
be a default argument. If there is a most used table (in this example a table called 'product') it also makes sense
to make it a default argument. Performing the parsing of the command-line arguments by hand takes 8 ugly lines of
boilerplate (using argparse would require about the same number of lines). With plac the entire __main__ block
reduces to the usual two lines:

if __name__ == '__main__':
import plac; plac.call(main)

In other words, six lines of boilerplate have been removed, and we get the usage message for free:

usage: example5.py [-h] dsn [table] [today]

Do something on the database

positional arguments:
dsn
table [product]
today [YYYY-MM-DD]

options:
-h, --help show this help message and exit

Notice that by default plac prints the string representation of the default values (with square brackets) in the usage
message. plac manages transparently even the case when you want to pass a variable number of arguments. Here is an

9

https://docs.python.org/library/argparse.html
https://pypi.org/project/plac/
https://pypi.org/project/plac/
https://pypi.org/project/plac/

plac

example, a script running on a database a series of SQL scripts:

example7.py
from datetime import datetime

def main(dsn, *scripts):
"Run the given scripts on the database"
for script in scripts:

print('executing %s' % script)
...

if __name__ == '__main__':
import plac; plac.call(main)

Here is the usage message:

usage: example7.py [-h] dsn [scripts ...]

Run the given scripts on the database

positional arguments:
dsn
scripts

options:
-h, --help show this help message and exit

The examples here should have made clear that plac is able to figure out the command-line arguments parser to use
from the signature of the main function. This is the whole idea behind plac: if the intent is clear, let’s the machine take
care of the details.

plac is inspired to an old Python Cookbook recipe of mine (optionparse), in the sense that it delivers the programmer
from the burden of writing the parser, but is less of a hack: instead of extracting the parser from the docstring of the
module, it extracts it from the signature of the main function.

The idea comes from the function annotations concept, a new feature of Python 3. An example is worth a thousand
words, so here it is:

example7_.py
from datetime import datetime

def main(dsn: "Database dsn", *scripts: "SQL scripts"):
"Run the given scripts on the database"
for script in scripts:

print('executing %s' % script)
...

if __name__ == '__main__':
import plac; plac.call(main)

Here the arguments of the main function have been annotated with strings which are intended to be used in the help
message:

usage: example7_.py [-h] dsn [scripts ...]

Run the given scripts on the database

positional arguments:

(continues on next page)

10 Chapter 4. Scripts with default arguments

https://pypi.org/project/plac/
https://pypi.org/project/plac/
https://code.activestate.com/recipes/278844-parsing-the-command-line/

plac

(continued from previous page)

dsn Database dsn
scripts SQL scripts

options:
-h, --help show this help message and exit

plac is able to recognize much more complex annotations, as I will show in the next paragraphs.

11

https://pypi.org/project/plac/

plac

12 Chapter 4. Scripts with default arguments

CHAPTER

FIVE

SCRIPTS WITH OPTIONS (AND SMART OPTIONS)

It is surprising how few command-line scripts with options I have written over the years (probably less than a hundred),
compared to the number of scripts with positional arguments I wrote (certainly more than a thousand of them). Still,
this use case cannot be neglected. The standard library modules (all of them) are quite verbose when it comes to
specifying the options and frankly I have never used them directly. Instead, I have always relied on the optionparse
recipe, which provides a convenient wrapper over argparse. Alternatively, in the simplest cases, I have just performed
the parsing by hand. In plac the parser is inferred by the function annotations. Here is an example:

example8.py
def main(command: ("SQL query", 'option', 'c'), dsn):

if command:
print('executing %s on %s' % (command, dsn))
...

if __name__ == '__main__':
import plac; plac.call(main)

Here the argument command has been annotated with the tuple ("SQL query", 'option', 'c'): the first
string is the help string which will appear in the usage message, the second string tells plac that command is an option
and the third string that there is also a short form of the option -c, the long form being --command. The usage
message is the following:

usage: example8.py [-h] [-c COMMAND] dsn

positional arguments:
dsn

options:
-h, --help show this help message and exit
-c COMMAND, --command COMMAND

SQL query

Here are two examples of usage:

$ python3 example8.py -c "select * from table" dsn
executing select * from table on dsn

$ python3 example8.py --command="select * from table" dsn
executing select * from table on dsn

The third argument in the function annotation can be omitted: in such case it will be assumed to be None. The
consequence is that the usual dichotomy between long and short options (GNU-style options) disappears: we get
smart options, which have the single character prefix of short options and behave like both long and short options,
since they can be abbreviated. Here is an example featuring smart options:

13

https://code.activestate.com/recipes/278844-parsing-the-command-line/
https://docs.python.org/library/argparse.html
https://pypi.org/project/plac/
https://pypi.org/project/plac/

plac

example6.py
def main(dsn, command: ("SQL query", 'option')='select * from table'):

print('executing %r on %s' % (command, dsn))

if __name__ == '__main__':
import plac; plac.call(main)

usage: example6.py [-h] [-command select * from table] dsn

positional arguments:
dsn

options:
-h, --help show this help message and exit
-command select * from table

SQL query

The following are all valid invocations of the script:

$ python3 example6.py -c "select" dsn
executing 'select' on dsn
$ python3 example6.py -com "select" dsn
executing 'select' on dsn
$ python3 example6.py -command="select" dsn
executing 'select' on dsn

Notice that the form -command=SQL (with the = sign) is recognized only for the full option, not for its abbreviations:

$ python3 example6.py -com="select" dsn
usage: example6.py [-h] [-command COMMAND] dsn
example6.py: error: unrecognized arguments: -com=select

If the option is not passed, the variable command will get the value None. However, it is possible to specify a
non-trivial default. Here is an example:

example8_.py
def main(dsn, command: ("SQL query", 'option', 'c')='select * from table'):

print('executing %r on %s' % (command, dsn))

if __name__ == '__main__':
import plac; plac.call(main)

Notice that the default value appears in the help message:

usage: example8_.py [-h] [-c select * from table] dsn

positional arguments:
dsn

options:
-h, --help show this help message and exit
-c select * from table, --command select * from table

SQL query

When you run the script and you do not pass the -command option, the default query will be executed:

14 Chapter 5. Scripts with options (and smart options)

plac

$ python3 example8_.py dsn
executing 'select * from table' on dsn

15

plac

16 Chapter 5. Scripts with options (and smart options)

CHAPTER

SIX

SCRIPTS WITH FLAGS

plac is able to recognize flags, i.e. boolean options which are True if they are passed to the command line and False
if they are absent. Here is an example:

example9.py

def main(verbose: ('prints more info', 'flag', 'v'), dsn: 'connection string'):
if verbose:

print('connecting to %s' % dsn)
...

if __name__ == '__main__':
import plac; plac.call(main)

usage: example9.py [-h] [-v] dsn

positional arguments:
dsn connection string

options:
-h, --help show this help message and exit
-v, --verbose prints more info

$ python3 example9.py -v dsn
connecting to dsn

Notice that it is an error trying to specify a default for flags: the default value for a flag is always False. If you
feel the need to implement non-boolean flags, you should use an option with two choices, as explained in the “more
features” section.

For consistency with the way the usage message is printed, I suggest you to follow the Flag-Option-Required-Default
(FORD) convention: in the main function write first the flag arguments, then the option arguments, then the required
arguments and finally the default arguments. This is just a convention and you are not forced to use it, except for the
default arguments (including the varargs) which must stay at the end as it is required by the Python syntax.

I also suggests to specify a one-character abbreviation for flags: in this way you can use the GNU-style composition
of flags (i.e. -zxvf is an abbreviation of -z -x -v -f). I usually do not provide the one-character abbreviation
for options, since it does not make sense to compose them.

Starting from plac 0.9.1 underscores in options and flags are automatically turned into dashes. This feature was
implemented at user request, to make it possible to use a more traditional naming. For instance now you can have a
--dry-run flag, whereas before you had to use --dry_run.

17

https://pypi.org/project/plac/
https://pypi.org/project/plac/

plac

def main(dry_run: ('Dry run', 'flag', 'd')):
if dry_run:

print('Doing nothing')
else:

print('Doing something')

if __name__ == '__main__':
import plac; plac.call(main)

Here is an example of usage:

$ python3.2 dry_run.py -h
usage: dry_run.py [-h] [-d]

optional arguments:
-h, --help show this help message and exit
-d, --dry-run Dry run

18 Chapter 6. Scripts with flags

CHAPTER

SEVEN

PLAC FOR PYTHON 2.X USERS

Even if Python 2 has reached its end of life, plac still provides a way to work with function annotations by means of
decorators. For instance the annotated function declaration

def main(dsn: "Database dsn", *scripts: "SQL scripts"):
...

is equivalent to the following code:

@plac.annotations(
dsn="Database dsn",
scripts="SQL scripts")

def main(dsn, *scripts):
...

In the rest of this article I will assume that you are using Python 2.X with X >= 4 and I will use the plac.
annotations decorator. Notice however that the core features of plac run even on Python 2.3.

19

https://pypi.org/project/plac/
https://pypi.org/project/plac/

plac

20 Chapter 7. plac for Python 2.X users

CHAPTER

EIGHT

MORE FEATURES

One of the goals of plac is to have a learning curve of minutes for its core features, compared to the learning curve of
hours of argparse. In order to reach this goal, I have not sacrificed all the features of argparse. Actually a lot of the
argparse power persists in plac. Until now, I have only showed simple annotations, but in general an annotation is a
6-tuple of the form

(help, kind, abbrev, type, choices, metavar)

where help is the help message, kind is a string in the set { "flag", "option", "positional"}, abbrev is
a one-character string or None, type is a callable taking a string in input, choices is a discrete sequence of values
and metavar is a string.

type is used to automagically convert the command line arguments from the string type to any Python type; by default
there is no conversion and type=None.

choices is used to restrict the number of the valid options; by default there is no restriction i.e. choices=None.

metavar has two meanings. For a positional argument it is used to change the argument name in the usage message
(and only there). By default the metavar is None and the name in the usage message is the same as the argument name.
For an option the metavar is used differently in the usage message, which has now the form [--option-name
METAVAR]. If the metavar is None, then it is equal to the uppercased name of the argument, unless the argument
has a default: then it is equal to the stringified form of the default.

Here is an example showing all of the features, including the metavar, copied from the argparse documentation:

example10.py
import plac

example with full annotations (help, kind, abbrev, type, choices, metavar)
@plac.annotations(

operator=("The name of an operator", 'positional', None, str,
['add', 'mul']),

numbers=("Zero or more numbers", 'positional', None, float, None, 'n'))
def main(operator, *numbers):

"A script to add and multiply numbers"
if operator == 'mul':

op = float.__mul__
result = 1.0

else: # operator == 'add'
op = float.__add__
result = 0.0

for n in numbers:
result = op(result, n)

return result

(continues on next page)

21

https://pypi.org/project/plac/
https://docs.python.org/library/argparse.html
https://docs.python.org/library/argparse.html
https://docs.python.org/library/argparse.html
https://pypi.org/project/plac/
https://docs.python.org/library/argparse.html

plac

(continued from previous page)

if __name__ == '__main__':
print(plac.call(main))

If you cannot remember the order of the annotations you can use the plac.Annotation class (there is an example
in the next section) or the alternative decoration syntax introduced in version 1.2:

@plac.pos('operator', "The name of an operator", choices=['add', 'mul'])
@plac.pos('numbers', "Zero or more numbers", float, metavar='n')
def main(operator, *numbers):

...

which is more compact. There are also a plac.opt decorator for options and plac.flg decorator for flags and
they can be stacked together at will.

Here is the usage:

usage: example10.py [-h] {add,mul} [n ...]

A script to add and multiply numbers

positional arguments:
{add,mul} The name of an operator
n Zero or more numbers

options:
-h, --help show this help message and exit

Notice that the docstring of the main function has been automatically added to the usage message. Here are a couple
of examples of usage:

$ python example10.py add 1 2 3 4
10.0
$ python example10.py mul 1 2 3 4
24.0
$ python example10.py ad 1 2 3 4 # a misspelling error
usage: example10.py [-h] {add,mul} [n ...]
example10.py: error: argument operator: invalid choice: 'ad' (choose from 'add', 'mul
↪→')

plac.call can also be used in doctests like this:

>>> import plac, example10
>>> plac.call(example10.main, ['add', '1', '2'])
3.0

plac.call works for generators too:

>>> def main(n):
... for i in range(int(n)):
... yield i
>>> plac.call(main, ['3'])
[0, 1, 2]

Internally plac.call tries to convert the output of the main function into a list, if possible. If the output is not
iterable or it is a string, it is left unchanged, but if it is iterable it is converted. In particular, generator objects are
exhausted by plac.call.

22 Chapter 8. More features

plac

This behavior avoids mistakes like forgetting of applying list(result) to the result of plac.call; moreover it
makes errors visible early, and avoids mistakes in code like the following:

try:
result = plac.call(main, args)

except:
do something

Without eagerness, a main function returning a generator object would not raise any exception until the generator is
iterated over. If you are a fan of laziness, you can still have it by setting the eager flag to False, as in the following
example:

for line in plac.call(main, args, eager=False):
print(line)

If main returns a generator object this example will print each line as soon as available, whereas the default behaviour
is to print all the lines together and the end of the computation.

23

plac

24 Chapter 8. More features

CHAPTER

NINE

WHAT TO DO IF AN ARGUMENT NAME CLASHES WITH A PYTHON
BUILTIN/KEYWORD?

Since version 1.3, thanks to a contribution of Istvan Albert, plac manages such cases easily. The trick is to add one (or
more) trailing underscores to the arguments that would clash; plac will automatically strip the underscores:

example13.py
import plac

@plac.flg('list_') # avoid clash with builtin
@plac.flg('yield_') # avoid clash with keyword
@plac.opt('sys_') # avoid clash with a very common name
def main(list_, yield_=False, sys_=100):

print(list_)
print(yield_)
print(sys_)

if __name__ == '__main__':
plac.call(main)

The usage message will be as you would expect:

$ python doc/example13.py -h
usage: example13.py [-h] [-l] [-y] [-s 100]

optional arguments:
-h, --help show this help message and exit
-l, --list
-y, --yield [False]
-s 100, --sys 100 [100]

25

https://github.com/ialbert
https://pypi.org/project/plac/
https://pypi.org/project/plac/

plac

26 Chapter 9. What to do if an argument name clashes with a Python builtin/keyword?

CHAPTER

TEN

KEYWORD ARGUMENTS

Starting from release 0.4, plac supports keyword arguments. In practice that means that if your main function has
keyword arguments, plac treats specially arguments of the form "name=value" in the command line. Here is an
example:

example12.py
import plac

@plac.annotations(
opt=('some option', 'option'),
args='default arguments',
kw='keyword arguments')

def main(opt, *args, **kw):
if opt:

yield 'opt=%s' % opt
if args:

yield 'args=%s' % str(args)
if kw:

yield 'kw=%s' % kw

if __name__ == '__main__':
for output in plac.call(main):

print(output)

Here is the generated usage message:

usage: example12.py [-h] [-opt OPT] [args ...] [kw ...]

positional arguments:
args default arguments
kw keyword arguments

options:
-h, --help show this help message and exit
-opt OPT some option

Here is how you call the script:

$ python example12.py -o X a1 a2 name=value
opt=X
args=('a1', 'a2')
kw={'name': 'value'}

27

https://pypi.org/project/plac/
https://pypi.org/project/plac/

plac

When using keyword arguments, one must be careful to use names which are not already taken; for instance in this
examples the name opt is taken:

$ python example12.py 1 2 kw1=1 kw2=2 opt=0
usage: example12.py [-h] [-o OPT] [args ...] [kw ...]
example12.py: error: colliding keyword arguments: opt

The names taken are the names of the flags, of the options, and of the positional arguments, excepted varargs and
keywords. This limitation is a consequence of the way the argument names are managed in function calls by the
Python language.

28 Chapter 10. Keyword arguments

CHAPTER

ELEVEN

PLAC VS ARGPARSE

plac is opinionated and by design it does not try to make available all of the features of argparse in an easy way. In
particular you should be aware of the following limitations/differences (the following assumes knowledge of argparse):

• plac does not support the destination concept: the destination coincides with the name of the argument, always.
This restriction has some drawbacks. For instance, suppose you want to define a long option called --yield.
In this case the destination would be yield, which is a Python keyword, and since you cannot introduce an
argument with that name in a function definition, it is impossible to implement it. Your choices are to change
the name of the long option, or to use argparse with a suitable destination.

• plac does not support “required options”. As the argparse documentation puts it: Required options are generally
considered bad form - normal users expect options to be optional. You should avoid the use of required options
whenever possible. Notice that since argparse supports them, plac can manage them too, but not directly.

• plac supports only regular boolean flags. argparse has the ability to define generalized two-value flags with
values different from True and False. An earlier version of plac had this feature too, but since you can
use options with two choices instead, and in any case the conversion from {True, False} to any couple
of values can be trivially implemented with a ternary operator (value1 if flag else value2), I have
removed it (KISS rules!).

• plac does not support nargs options directly (it uses them internally, though, to implement flag recognition).
The reason it that all the use cases of interest to me are covered by plac and I did not feel the need to increase
the learning curve by adding direct support for nargs.

• plac does support subparsers, but you must read the section :ref:`Implementing subcommands`_ to see how
it works.

• plac does not support actions directly. This also looks like a feature too advanced for the goals of plac. Notice,
however, that the ability to define your own annotation objects (again, see the section :ref:`Implementing
subcommand`_) may mitigate the need for custom actions.

On the plus side, plac can directly leverage a number of argparse features.

For instance, you can use argparse.FileType directly. Moreover, it is possible to pass options to the underly-
ing argparse.ArgumentParser object (currently it accepts the default arguments description, epilog,
prog, usage, add_help, argument_default, parents, prefix_chars, fromfile_prefix_chars,
conflict_handler, formatter_class). It is enough to set such attributes on the main function. For instance
writing

def main(...):
pass

main.add_help = False

disables the recognition of the help flag -h, --help. This mechanism does not look particularly elegant, but it
works well enough. I assume that the typical user of plac will be happy with the defaults and would not want to
change them; still it is possible if she wants to.

29

https://pypi.org/project/plac/
https://docs.python.org/library/argparse.html
https://docs.python.org/library/argparse.html
https://docs.python.org/library/argparse.html
https://pypi.org/project/plac/
https://docs.python.org/library/argparse.html
https://docs.python.org/library/argparse.html
https://pypi.org/project/plac/
https://pypi.org/project/plac/
https://docs.python.org/library/argparse.html
https://pypi.org/project/plac/
https://pypi.org/project/plac/
https://pypi.org/project/plac/
https://pypi.org/project/plac/
https://pypi.org/project/plac/
https://pypi.org/project/plac/
https://pypi.org/project/plac/
https://docs.python.org/library/argparse.html
https://docs.python.org/library/argparse.html#argparse.FileType
https://pypi.org/project/plac/

plac

For instance, by setting the description attribute, it is possible to add a comment to the usage message (by default
the docstring of the main function is used as description).

It is also possible to change the option prefix; for instance if your script must run under Windows and you want to use
“/” as option prefix you can add the line:

main.prefix_chars='/-'

The first prefix char (/) is used as the default for the recognition of options and flags; the second prefix char (-) is kept
to keep the -h/--help option working: however you can disable it and reimplement it, if you like.

It is possible to access directly the underlying ArgumentParser object, by invoking the plac.parser_from utility
function:

>>> import plac
>>> def main(arg):
... pass
...
>>> print(plac.parser_from(main))
ArgumentParser(prog=...)

Internally plac.call uses plac.parser_from. Notice that when plac.call(func) is invoked multiple
time, the parser is re-used and not rebuilt from scratch again.

I use plac.parser_from in the unit tests of the module, but regular users should not need to use it, unless they
want to access all of the features of argparse directly without calling the main function.

Interested readers should read the documentation of argparse to understand the meaning of the other options. If there
is a set of options that you use very often, you may consider writing a decorator adding such options to the main
function for you. For simplicity, plac does not perform any magic.

30 Chapter 11. plac vs argparse

https://docs.python.org/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/library/argparse.html
https://docs.python.org/library/argparse.html
https://pypi.org/project/plac/

CHAPTER

TWELVE

FINAL EXAMPLE: A SHELVE INTERFACE

Here is a nontrivial example showing off many plac feature, including keyword arguments recognition. The use case
is the following: suppose we have stored the configuration parameters of a given application into a Python shelve and
we need a command-line tool to edit the shelve. A possible implementation using plac could be the following:

ishelve.py
import os
import shelve
import plac

DEFAULT_SHELVE = 'conf.shelve'

@plac.annotations(
help=('show help', 'flag'),
showall=('show all parameters in the shelve', 'flag'),
clear=('clear the shelve', 'flag'),
delete=('delete an element', 'option'),
filename=('filename of the shelve', 'option'),
params='names of the parameters in the shelve',
setters='setters param=value')

def main(help, showall, clear, delete, filename=DEFAULT_SHELVE,

*params, **setters):
"A simple interface to a shelve. Use .help to see the available commands."
sh = shelve.open(filename)
try:

if not any([help, showall, clear, delete, params, setters]):
yield ('no arguments passed, use .help to see the '

'available commands')
elif help: # custom help

yield 'Commands: .help, .showall, .clear, .delete'
yield '<param> ...'
yield '<param=value> ...'

elif showall:
for param, name in sh.items():

yield '%s=%s' % (param, name)
elif clear:

sh.clear()
yield 'cleared the shelve'

elif delete:
try:

del sh[delete]
except KeyError:

yield '%s: not found' % delete
else:

(continues on next page)

31

https://pypi.org/project/plac/
https://pypi.org/project/plac/

plac

(continued from previous page)

yield 'deleted %s' % delete
for param in params:

try:
yield sh[param]

except KeyError:
yield '%s: not found' % param

for param, value in setters.items():
sh[param] = value
yield 'setting %s=%s' % (param, value)

finally:
sh.close()

main.add_help = False # there is a custom help, remove the default one
main.prefix_chars = '.' # use dot-prefixed commands

if __name__ == '__main__':
for output in plac.call(main):

print(output)

A few notes are in order:

1. I have disabled the ordinary help provided by argparse and I have implemented a custom help command.

2. I have changed the prefix character used to recognize the options to a dot.

3. Keyword arguments recognition (in the **setters) is used to make it possible to store a value in the shelve
with the syntax param_name=param_value.

4. *params are used to retrieve parameters from the shelve and some error checking is performed in the case of
missing parameters

5. A command to clear the shelve is implemented as a flag (.clear).

6. A command to delete a given parameter is implemented as an option (.delete).

7. There is an option with default (.filename=conf.shelve) to set the filename of the shelve.

8. All things considered, the code looks like a poor man’s object oriented interface implemented with a chain of
elifs instead of methods. Of course, plac can do better than that, but let me start from a low-level approach first.

If you run ishelve.py without arguments you get the following message:

$ python ishelve.py
no arguments passed, use .help to see the available commands

If you run ishelve.py with the option .h (or any abbreviation of .help) you get:

$ python ishelve.py .h
Commands: .help, .showall, .clear, .delete
<param> ...
<param=value> ...

You can check by hand that the tool works:

$ python ishelve.py .clear # start from an empty shelve
cleared the shelve
$ python ishelve.py a=1 b=2
setting a=1

(continues on next page)

32 Chapter 12. Final example: a shelve interface

https://docs.python.org/library/argparse.html
https://pypi.org/project/plac/

plac

(continued from previous page)

setting b=2
$ python ishelve.py .showall
b=2
a=1
$ python ishelve.py .del b # abbreviation for .delete
deleted b
$ python ishelve.py a
1
$ python ishelve.py b
b: not found
$ python ishelve.py .cler # misspelled command
usage: ishelve.py [.help] [.showall] [.clear] [.delete DELETE]

[.filename conf.shelve]
[params ...] [setters ...]

ishelve.py: error: unrecognized arguments: .cler

33

plac

34 Chapter 12. Final example: a shelve interface

CHAPTER

THIRTEEN

PLAC VS THE REST OF THE WORLD

Originally plac boasted about being “the easiest command-line arguments parser in the world”. Since then, people
started pointing out to me various projects which are based on the same idea (extracting the parser from the main
function signature) and are arguably even easier than plac:

• opterator by Dusty Phillips

• CLIArgs by Pavel Panchekha

• commandline by David Laban

Luckily for me none of such projects had the idea of using function annotations and argparse; as a consequence, they
are no match for the capabilities of plac.

Of course, there are tons of other libraries to parse the command line. For instance Clap by Matthew Frazier which
appeared on PyPI just the day before plac; Clap is fine but it is certainly not easier than plac.

plac can also be used as a replacement of the cmd module in the standard library and as such it shares many features
with the module cmd2 by Catherine Devlin. However, this is completely coincidental, since I became aware of the
cmd2 module only after writing plac.

Command-line argument parsers keep coming out; between the newcomers I will notice marrow.script by Alice Bevan-
McGregor, which is quite similar to plac in spirit, but does not rely on argparse at all. Argh by Andrey Mikhaylenko
is also worth mentioning: it is based on argparse, it came after plac and I must give credit to the author for the choice
of the name, much funnier than plac!

35

https://pypi.org/project/plac/
https://pypi.org/project/plac/
https://pypi.org/project/opterator/
https://pypi.org/project/CLIArgs/
https://pypi.org/project/commandline/
https://docs.python.org/library/argparse.html
https://pypi.org/project/plac/
https://pypi.org/project/Clap/
https://pypi.org/project/plac/
https://pypi.org/project/Clap/
https://pypi.org/project/plac/
https://pypi.org/project/plac/
https://docs.python.org/library/cmd.html
https://github.com/python-cmd2/cmd2
https://github.com/python-cmd2/cmd2
https://pypi.org/project/plac/
https://github.com/marrow/script
https://pypi.org/project/plac/
https://docs.python.org/library/argparse.html
https://pythonhosted.org/argh/
https://docs.python.org/library/argparse.html
https://pypi.org/project/plac/

plac

36 Chapter 13. plac vs the rest of the world

CHAPTER

FOURTEEN

THE FUTURE

Currently the core of plac is around 200 lines of code, not counting blanks, comments and docstrings. I do not plan to
extend the core much in the future. The idea is to keep the module short: it is and it should remain a little wrapper over
argparse. Actually I have thought about contributing the core back to argparse if plac becomes successful and gains a
reasonable number of users. For the moment it should be considered in a frozen status.

Notice that even if plac has been designed to be simple to use for simple stuff, its power should not be underestimated;
it is actually a quite advanced tool with a domain of applicability which far exceeds the realm of command-line
arguments parsers.

Version 0.5 of plac doubled the code base and the documentation: it is based on the idea of using plac to implement
command-line interpreters, i.e. something akin to the cmd module in the standard library, only better. The new
features are implemented in a separated module (plac_ext.py), since they require Python 2.5 to work, whereas
plac_core.py only requires Python 2.3.

37

https://pypi.org/project/plac/
https://docs.python.org/library/argparse.html
https://docs.python.org/library/argparse.html
https://pypi.org/project/plac/
https://pypi.org/project/plac/
https://pypi.org/project/plac/
https://pypi.org/project/plac/

plac

38 Chapter 14. The future

CHAPTER

FIFTEEN

TRIVIA: THE STORY BEHIND THE NAME

The plac project started very humbly: I just wanted to make my old optionparse recipe easy_installable, and to publish
it on PyPI. The original name of plac was optionparser and the idea behind it was to build an OptionParser object from
the docstring of the module. However, before doing that, I decided to check out the argparse module, since I knew it
was going into Python 2.7 and Python 2.7 was coming out. Soon enough I realized two things:

1. the single greatest idea of argparse was unifying the positional arguments and the options in a single namespace
object;

2. parsing the docstring was so old-fashioned, considering the existence of functions annotations in Python 3.

Putting together these two observations with the original idea of inferring the parser I decided to build an Argument-
Parser object from function annotations. The optionparser name was ruled out, since I was now using argparse;
a name like argparse_plus was also ruled out, since the typical usage was completely different from the argparse
usage.

I made a research on PyPI and the name clap (Command Line Arguments Parser) was not taken, so I renamed every-
thing to clap. After two days a Clap module appeared on PyPI <expletives deleted>!

Having little imagination, I decided to rename everything again to plac, an anagram of clap: since it is a non-existing
English name, I hope nobody will steal it from me!

That concludes the section about the basic usage of plac. You are now ready to read about the advanced usage.

39

https://pypi.org/project/plac/
https://code.activestate.com/recipes/278844-parsing-the-command-line/
https://pypi.org/project/plac/
https://docs.python.org/library/optparse.html#optparse.OptionParser
https://docs.python.org/library/argparse.html
https://docs.python.org/library/argparse.html
https://docs.python.org/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/library/argparse.html
https://docs.python.org/library/argparse.html
https://pypi.org/project/Clap/
https://pypi.org/project/plac/

plac

40 Chapter 15. Trivia: the story behind the name

CHAPTER

SIXTEEN

ADVANCED USAGES OF PLAC

16.1 Introduction

One of the design goals of plac is to make it dead easy to write a scriptable and testable interface for an application.
You can use plac whenever you have an API with strings in input and strings in output, and that includes a huge domain
of applications.

A string-oriented interface is a scriptable interface by construction. That means that you can define a command
language for your application and that it is possible to write scripts which are interpretable by plac and can be run as
batch scripts.

Actually, at the most general level, you can see plac as a generic tool to write domain specific languages (DSL). With
plac you can test your application interactively as well as with batch scripts, and even with the analogous of Python
doctests for your defined language.

You can easily replace the cmd module of the standard library and you could easily write an application like twill
with plac. Or you could use it to script your building procedure. plac also supports parallel execution of multiple
commands and can be used as task manager. It is also quite easy to build a GUI or a Web application on top of plac.
When speaking of things you can do with plac, your imagination is the only limit!

16.2 From scripts to interactive applications

Command-line scripts have many advantages, but they are no substitute for interactive applications.

In particular, if you have a script with a large startup time which must be run multiple times, it is best to turn it into
an interactive application, so that the startup is performed only once. plac provides an Interpreter class just for
this purpose.

The Interpreter class wraps the main function of a script and provides an .interact method to start an
interactive interpreter reading commands from the console.

The .interact method reads commands from the console and send them to the underlying interpreter, until the
user send a CTRL-D command (CTRL-Z in Windows). There is a default argument prompt='i> ' which can be
used to change the prompt. The text displayed at the beginning of the interactive session is the docstring of the main
function. plac also understands command abbreviations: in this example del is an abbreviation for delete. In
case of ambiguous abbreviations plac raises a NameError.

Finally I must notice that plac.Interpreter is available only if you are using a recent version of Python (>=
2.5), because it is a context manager object which uses extended generators internally.

41

https://pypi.org/project/plac/
https://pypi.org/project/plac/
https://pypi.org/project/plac/
https://pypi.org/project/plac/
https://pypi.org/project/plac/
https://github.com/twill-tools/twill
https://pypi.org/project/plac/
https://pypi.org/project/plac/
https://pypi.org/project/plac/
https://pypi.org/project/plac/
https://pypi.org/project/plac/

plac

16.3 Testing a plac application

You can conveniently test your application in interactive mode. However manual testing is a poor substitute for
automatic testing.

In principle, one could write automatic tests for the ishelve application by using plac.call directly:

test_ishelve.py
import plac
import ishelve

def test():
assert plac.call(ishelve.main, ['.clear']) == ['cleared the shelve']
assert plac.call(ishelve.main, ['a=1']) == ['setting a=1']
assert plac.call(ishelve.main, ['a']) == ['1']
assert plac.call(ishelve.main, ['.delete=a']) == ['deleted a']
assert plac.call(ishelve.main, ['a']) == ['a: not found']

if __name__ == '__main__':
test()

However, using plac.call is not especially nice. The big issue is that plac.call responds to invalid input by
printing an error message on stderr and by raising a SystemExit: this is certainly not a nice thing to do in a test.

As a consequence of this behavior it is impossible to test for invalid commands, unless you wrap the SystemExit
exception by hand each time (and possibly you do something with the error message in stderr too). Luckily, plac
offers a better testing support through the check method of Interpreter objects:

test_ishelve_more.py
from __future__ import with_statement
import ishelve
import plac

def test():
with plac.Interpreter(ishelve.main) as i:

i.check('.clear', 'cleared the shelve')
i.check('a=1', 'setting a=1')
i.check('a', '1')
i.check('.delete=a', 'deleted a')
i.check('a', 'a: not found')

The method .check(given_input, expected_output) works on strings and raises an
AssertionError if the output produced by the interpreter is different from the expected output for the
given input. Notice that AssertionError is caught by tools like pytest and nosetests and actually plac
tests are intended to be run with such tools.

Interpreters offer a minor syntactic advantage with respect to calling plac.call directly, but they offer a major
semantic advantage when things go wrong (read exceptions): an Interpreter object internally invokes something
like plac.call, but it wraps all exceptions, so that i.check is guaranteed not to raise any exception except
AssertionError.

Even the SystemExit exception is captured and you can write your test as

i.check('-cler', 'SystemExit: unrecognized arguments: -cler')

without risk of exiting from the Python interpreter.

42 Chapter 16. Advanced usages of plac

plac

There is a second advantage of interpreters: if the main function contains some initialization code and finalization
code (__enter__ and __exit__ functions) they will be run at the beginning and at the end of the interpreter loop,
whereas plac.call ignores the initialization/finalization code.

16.4 Plac easy tests

Writing your tests in terms of Interpreter.check is certainly an improvement over writing them in terms of
plac.call, but they are still too low-level for my taste. The Interpreter class provides support for doctest-
style tests, a.k.a. plac easy tests.

By using plac easy tests you can cut and paste your interactive session and turn it into a runnable automatics test.
Consider for instance the following file ishelve.placet (the .placet extension is a mnemonic for “plac easy
tests”):

#!ishelve.py
i> .clear # start from a clean state
cleared the shelve
i> a=1
setting a=1
i> a
1
i> .del a
deleted a
i> a
a: not found
i> .cler # spelling error
.cler: not found

Notice the presence of the shebang line containing the name of the plac tool to test (a plac tool is just a Python module
with a function called main). The shebang is ignored by the interpreter (it looks like a comment to it) but it is there
so that external tools (say a test runner) can infer the plac interpreter to use to test the file.

You can run the ishelve.placet file by calling the .doctest method of the interpreter, as in this example:

$ python -c "import plac, ishelve
plac.Interpreter(ishelve.main).doctest(open('ishelve.placet'), verbose=True)"

Internally Interpreter.doctests invokes things like Interpreter.check multiple times inside the same
context and compares the output with the expected output: if even one check fails, the whole test fails.

You should realize that the easy tests supported by plac are not unittests: they are functional tests. They model
the user interaction and the order of the operations generally matters. The single subtests in a .placet file are not
independent and it makes sense to exit immediately at the first failure.

The support for doctests in plac comes nearly for free, thanks to the shlex module in the standard library, which
is able to parse simple languages as the ones you can implement with plac. In particular, thanks to shlex, plac is
able to recognize comments (the default comment character is #), escape sequences and more. Look at the shlex
documentation if you need to customize how the language is interpreted. For more flexibility, it is even possible to
pass the interpreter a custom split function with signature split(line, commentchar).

In addition, I have implemented some support for line number recognition, so that if a test fails you get the line number
of the failing command. This is especially useful if your tests are stored in external files, though they do not need to
be in a file: you can just pass to the .doctest method a list of strings corresponding to the lines of the file.

At the present plac does not use any code from the doctest module, but the situation may change in the future (it would
be nice if plac could reuse doctests directives like ELLIPSIS).

16.4. Plac easy tests 43

https://pypi.org/project/plac/
https://pypi.org/project/plac/
https://pypi.org/project/plac/
https://docs.python.org/library/shlex.html
https://pypi.org/project/plac/
https://docs.python.org/library/shlex.html
https://pypi.org/project/plac/
https://docs.python.org/library/shlex.html
https://pypi.org/project/plac/
https://pypi.org/project/plac/

plac

It is straightforward to integrate your .placet tests with standard testing tools. For instance, you can integrate your
doctests with nose or py.test as follow:

import os, shlex, plac

def test_doct():
"""
Find all the doctests in the current directory and run them with the
corresponding plac interpreter (the shebang rules!)
"""
placets = [f for f in os.listdir('.') if f.endswith('.placet')]
for placet in placets:

lines = list(open(placet))
assert lines[0].startswith('#!'), 'Missing or incorrect shebang line!'
firstline = lines[0][2:] # strip the shebang
main = plac.import_main(*shlex.split(firstline))
yield plac.Interpreter(main).doctest, lines[1:]

Here you should notice that usage of plac.import_main, a utility which is able to import the main function of
the script specified in the shebang line. You can use both the full path name of the tool, or a relative path name. In this
case the runner looks at the environment variable PLACPATH and it searches the plac tool in the directories specified
there (PLACPATH is just a string containing directory names separated by colons). If the variable PLACPATH is not
defined, it just looks in the current directory. If the plac tool is not found, an ImportError is raised.

16.5 Plac batch scripts

It is pretty easy to realize that an interactive interpreter can also be used to run batch scripts: instead of reading the
commands from the console, it is enough to read the commands from a file. plac interpreters provide an .execute
method to perform just that.

There is just a subtle point to notice: whereas in an interactive loop one wants to manage all exceptions, a batch
script should not continue in the background in case of unexpected errors. The implementation of Interpreter.
execute makes sure that any error raised by plac.call internally is re-raised. In other words, plac interpreters
wrap the errors, but does not eat them: the errors are always accessible and can be re-raised on demand.

The exception is the case of invalid commands, which are skipped. Consider for instance the following batch file,
which contains a misspelled command (.dl instead of .del):

#!ishelve.py
.clear
a=1 b=2
.show
.del a
.dl b
.show

If you execute the batch file, the interpreter will print a .dl: not found at the .dl line and will continue:

$ python -c "import plac, ishelve
plac.Interpreter(ishelve.main).execute(open('ishelve.plac'), verbose=True)"
i> .clear
cleared the shelve
i> a=1 b=2
setting a=1
setting b=2

(continues on next page)

44 Chapter 16. Advanced usages of plac

https://pypi.org/project/plac/
https://pypi.org/project/plac/

plac

(continued from previous page)

i> .show
b=2
a=1
i> .del a
deleted a
i> .dl b
2
.dl: not found
i> .show
b=2

The verbose flag is there to show the lines which are being interpreted (prefixed by i>). This is done on purpose,
so that you can cut and paste the output of the batch script and turn it into a .placet test (cool, isn’t it?).

16.6 Implementing subcommands

When I discussed the ishelve implementation, I said that it looked like the poor man implementation of an object
system as a chain of elifs; I also said that plac was able to do much better than that. Here I will substantiate my claim.

plac is actually able to infer a set of subparsers from a generic container of commands. This is useful if you want
to implement subcommands (a familiar example of a command-line application featuring subcommands is version
control system). Technically a container of commands is any object with a .commands attribute listing a set of
functions or methods which are valid commands. A command container may have initialization/finalization hooks
(__enter__/__exit__) and dispatch hooks (__missing__, invoked for invalid command names). Moreover,
only when using command containers is plac able to provide automatic autocompletion of commands.

The shelve interface can be rewritten in an object-oriented way as follows:

ishelve2.py
import os
import shelve
import plac

class ShelveInterface(object):
"A minimal interface over a shelve object."
commands = 'set', 'show', 'showall', 'delete'

@plac.annotations(
configfile=('path name of the shelve', 'option'))

def __init__(self, configfile):
self.configfile = configfile or 'conf.shelve'
self.fname = os.path.expanduser(self.configfile)
self.__doc__ += ('\nOperating on %s.\nUse help to see '

'the available commands.\n' % self.fname)

def __enter__(self):
self.sh = shelve.open(self.fname)
return self

def __exit__(self, etype, exc, tb):
self.sh.close()

def set(self, name, value):

(continues on next page)

16.6. Implementing subcommands 45

https://pypi.org/project/plac/
https://pypi.org/project/plac/
https://pypi.org/project/plac/

plac

(continued from previous page)

"set name value"
yield 'setting %s=%s' % (name, value)
self.sh[name] = value

def show(self, *names):
"show given parameters"
for name in names:

yield '%s = %s' % (name, self.sh[name]) # no error checking

def showall(self):
"show all parameters"
for name in self.sh:

yield '%s = %s' % (name, self.sh[name])

def delete(self, name=''):
"delete given parameter (or everything)"
if name == '':

yield 'deleting everything'
self.sh.clear()

else:
yield 'deleting %s' % name
del self.sh[name] # no error checking

if __name__ == '__main__':
plac.Interpreter(plac.call(ShelveInterface)).interact()

plac.Interpreter objects wrap context manager objects consistently. In other words, if you wrap an object with
__enter__ and __exit__ methods, they are invoked in the right order (__enter__ before the interpreter loop
starts and __exit__ after the interpreter loop ends, both in the regular and in the exceptional case). In our example,
the methods __enter__ and __exit__ make sure the the shelve is opened and closed correctly even in the case
of exceptions. Notice that I have not implemented any error checking in the show and delete methods on purpose,
to verify that plac works correctly in the presence of exceptions.

When working with command containers, plac automatically adds two special commands to the set of provided com-
mands: help and .last_tb. The help command is the easier to understand: when invoked without arguments it
displays the list of available commands with the same formatting of the cmd module; when invoked with the name of
a command it displays the usage message for that command. The .last_tb command is useful when debugging: in
case of errors, it allows you to display the traceback of the last executed command.

Here is the usage message:

usage: ishelve2.py [-h] [-configfile CONFIGFILE]

A minimal interface over a shelve object.

optional arguments:
-h, --help show this help message and exit
-configfile CONFIGFILE

path name of the shelve

Here is a session of usage on a Unix-like operating system:

$ python ishelve2.py -c test.shelve
A minimal interface over a shelve object.
Operating on test.shelve.

(continues on next page)

46 Chapter 16. Advanced usages of plac

https://pypi.org/project/plac/
https://pypi.org/project/plac/
https://docs.python.org/library/cmd.html

plac

(continued from previous page)

Use help to see the available commands.
i> help

special commands
================
.last_tb

custom commands
===============
delete set show showall

i> delete
deleting everything
i> set a pippo
setting a=pippo
i> set b lippo
setting b=lippo
i> showall
b = lippo
a = pippo
i> show a b
a = pippo
b = lippo
i> del a
deleting a
i> showall
b = lippo
i> delete a
deleting a
KeyError: 'a'
i> .last_tb
File "/usr/local/lib/python2.6/dist-packages/plac-0.6.0-py2.6.egg/plac_ext.py", line
↪→190, in _wrap

for value in genobj:
File "./ishelve2.py", line 37, in delete
del self.sh[name] # no error checking

File "/usr/lib/python2.6/shelve.py", line 136, in __delitem__
del self.dict[key]

i>

Notice that in interactive mode the traceback is hidden, unless you pass the verbose flag to the Interpreter.
interact method.

CHANGED IN VERSION 0.9: if you have an old version of plac the help command must be prefixed with a dot,
i.e. you must write .help. The old behavior was more consistent in my opinion, since it made it clear that the help
command was special and threated differently from the regular commands. Notice that if you implement a custom
help command in the commander class the default help will not be added, as you would expect.

In version 0.9 an exception `plac.Interpreter.Exit was added. Its purpose is to make it easy to define
commands to exit from the command loop. Just define something like:

def quit(self):
raise plac.Interpreter.Exit

and the interpreter will be closed properly when the quit command is entered.

16.6. Implementing subcommands 47

https://pypi.org/project/plac/

plac

16.7 plac.Interpreter.call

At the core of plac there is the call function which invokes a callable with the list of arguments passed at the
command-line (sys.argv[1:]). Thanks to plac.call you can launch your module by simply adding the lines:

if __name__ == '__main__':
plac.call(main)

Everything works fine if main is a simple callable performing some action; however, in many cases, one has a main
“function” which is actually a factory returning a command container object. For instance, in my second shelve
example the main function is the class ShelveInterface, and the two lines needed to run the module are a bit
ugly:

if __name__ == '__main__':
plac.Interpreter(plac.call(ShelveInterface)).interact()

Moreover, now the program runs, but only in interactive mode, i.e. it is not possible to run it as a script. Instead,
it would be nice to be able to specify the command to execute on the command-line and have the interpreter start,
execute the command and finish properly (I mean by calling __enter__ and __exit__) without needing user
input. Then the script could be called from a batch shell script working in the background. In order to provide such
functionality plac.Interpreter provides a classmethod named .call which takes the factory, instantiates it
with the arguments read from the command line, wraps the resulting container object as an interpreter and runs it with
the remaining arguments found in the command line. Here is the code to turn the ShelveInterface into a script

ishelve3.py
from ishelve2 import ShelveInterface

if __name__ == '__main__':
import plac; plac.Interpreter.call(ShelveInterface)

try the following:
$ python ishelve3.py delete
$ python ishelve3.py set a 1
$ python ishelve3.py showall

and here are a few examples of usage:

$ python ishelve3.py help

special commands
================
.last_tb

custom commands
===============
delete set show showall

$ python ishelve3.py set a 1
setting a=1
$ python ishelve3.py show a
a = 1

If you pass the -i flag in the command line, then the script will enter in interactive mode and ask the user for the
commands to execute:

48 Chapter 16. Advanced usages of plac

plac

$ python ishelve3.py -i
A minimal interface over a shelve object.
Operating on conf.shelve.
Use help to see the available commands.

i>

In a sense, I have closed the circle: at the beginning of this document I discussed how to turn a script into an inter-
active application (the shelve_interpreter.py example), whereas here I have show how to turn an interactive
application into a script.

The complete signature of plac.Interpreter.call is the following:

call(factory, arglist=sys.argv[1:],
commentchar='#', split=shlex.split,
stdin=sys.stdin, prompt='i> ', verbose=False)

The factory must have a fixed number of positional arguments (no default arguments, no varargs, no kwargs), otherwise
a TypeError is raised: the reason is that we want to be able to distinguish the command-line arguments needed to
instantiate the factory from the remaining arguments that must be sent to the corresponding interpreter object. It is also
possible to specify a list of arguments different from sys.argv[1:] (useful in tests), the character to be recognized
as a comment, the splitting function, the input source, the prompt to use while in interactive mode, and a verbose flag.

16.8 Readline support

Starting from release 0.6 plac offers full readline support. That means that if your Python was compiled with readline
support you get autocompletion and persistent command history for free. By default all commands autocomplete in a
case sensitive way. If you want to add new words to the autocompletion set, or you want to change the location of the
.history file, or to change the case sensitivity, the way to go is to pass a plac.ReadlineInput object to the
interpreter.

If the readline library is not available, my suggestion is to use the rlwrap tool which provides similar features, at least
on Unix-like platforms. plac should also work fine on Windows with the pyreadline library (I do not use Windows,
so this part is very little tested: I tried it only once and it worked, but your mileage may vary). For people worried
about licenses, I will notice that plac uses the readline library only if available, it does not include it and it does
not rely on it in any fundamental way, so that the plac licence does not need to be the GPL (actually it is a BSD
do-whatever-you-want-with-it licence).

The interactive mode of plac can be used as a replacement of the cmd module in the standard library. It is actually
better than cmd: for instance, the help command is more powerful, since it provides information about the arguments
accepted by the given command:

i> help set
usage: set name value

set name value

positional arguments:
name
value

i> help delete
usage: delete [name]

delete given parameter (or everything)
(continues on next page)

16.8. Readline support 49

https://pypi.org/project/plac/
https://github.com/hanslub42/rlwrap
https://pypi.org/project/plac/
https://ipython.org/pyreadline.html
https://pypi.org/project/plac/
https://pypi.org/project/plac/
https://docs.python.org/library/cmd.html
https://docs.python.org/library/cmd.html

plac

(continued from previous page)

positional arguments:
name [None]

i> help show
usage: show [names ...]

show given parameters

positional arguments:
names

As you can imagine, the help message is provided by the underlying argparse subparser: there is a subparser for each
command. plac commands accept options, flags, varargs, keyword arguments, arguments with defaults, arguments
with a fixed number of choices, type conversion and all the features provided of argparse .

Moreover at the moment plac also understands command abbreviations. However, this feature may disappear in
future releases. It was meaningful in the past, when plac did not support readline.

Notice that if an abbreviation is ambiguous, plac warns you:

i> sh
NameError: Ambiguous command 'sh': matching ['showall', 'show']

16.9 The plac runner

The distribution of plac includes a runner script named plac_runner.py, which will be installed in a suitable di-
rectory in your system by distutils (say in /usr/local/bin/plac_runner.py in a Unix-like operative system).
The runner provides many facilities to run .plac scripts and .placet files, as well as Python modules containing
a main object, which can be a function, a command container object or even a command container class.

For instance, suppose you want to execute a script containing commands defined in the ishelve2 module like the
following one:

#!ishelve2.py:ShelveInterface -c conf.shelve
set a 1
del a
del a # intentional error

The first line of the .plac script contains the name of the python module containing the plac interpreter and the
arguments which must be passed to its main function in order to be able to instantiate an interpreter object. In this
case I appended :ShelveInterface to the name of the module to specify the object that must be imported: if not
specified, by default the object named ‘main’ is imported. The other lines contains commands. You can run the script
as follows:

$ plac_runner.py --batch ishelve2.plac
setting a=1
deleting a
Traceback (most recent call last):

...
_bsddb.DBNotFoundError: (-30988, 'DB_NOTFOUND: No matching key/data pair found')

The last command intentionally contained an error, to show that the plac runner does not eat the traceback.

50 Chapter 16. Advanced usages of plac

https://docs.python.org/library/argparse.html
https://pypi.org/project/plac/
https://docs.python.org/library/argparse.html
https://pypi.org/project/plac/
https://pypi.org/project/plac/
https://pypi.org/project/plac/
https://docs.python.org/distutils/

plac

The runner can also be used to run Python modules in interactive mode and non-interactive mode. If you put this alias
in your bashrc

alias plac="plac_runner.py"

(or you define a suitable plac.bat script in Windows) you can run the ishelve2.py script in interactive mode
as follows:

$ plac -i ishelve2.py:ShelveInterface
A minimal interface over a shelve object.
Operating on conf.shelve.
.help to see the available commands.

i> del
deleting everything
i> set a 1
setting a=1
i> set b 2
setting b=2
i> show b
b = 2

Now you can cut and paste the interactive session and turn it into a .placet file like the following:

#!ishelve2.py:ShelveInterface -configfile=test.shelve
an example of a .placet file for the ShelveInterface
i> del
deleting everything
i> set a 1
setting a=1
i> set b 2
setting b=2
i> show a
a = 1

Notice that the first line specifies a test database test.shelve, to avoid clobbering your default shelve. If you
misspell the arguments in the first line plac will give you an argparse error message (just try).

You can run placets following the shebang convention directly with the plac runner:

$ plac --test ishelve2.placet
run 1 plac test(s)

If you want to see the output of the tests, pass the -v/--verbose flag. Notice that he runner ignores the extension,
so you can actually use any extension your like, but it relies on the first line of the file to invoke the corresponding plac
tool with the given arguments.

The plac runner does not provide any test discovery facility, but you can use standard Unix tools to help. For instance,
you can run all the .placet files into a directory and its subdirectories as follows:

$ find . -name *.placet | xargs plac_runner.py -t

The plac runner expects the main function of your script to return a plac tool, i.e. a function or an object with a
.commands attribute. If this is not the case the runner exits gracefully.

It also works in non-interactive mode, if you call it as

$ plac module.py args ...

Here is an example:

16.9. The plac runner 51

https://docs.python.org/library/argparse.html

plac

$ plac ishelve.py a=1
setting a=1
$ plac ishelve.py .show
a=1

Notice that in non-interactive mode the runner just invokes plac.call on the main object of the Python module.

16.10 A non class-based example

plac does not force you to use classes to define command containers. Even a simple function can be a valid command
container, it is enough to add a .commands attribute to it, and possibly __enter__ and/or __exit__ attributes
too.

In particular, a Python module is a perfect container of commands. As an example, consider the following module
implementing a fake Version Control System:

"A Fake Version Control System"

import plac # this implementation also works with Python 2.4

commands = 'checkout', 'commit', 'status'

@plac.annotations(url='url of the source code')
def checkout(url):

"A fake checkout command"
return ('checkout ', url)

@plac.annotations(message=('commit message', 'option'))
def commit(message):

"A fake commit command"
return ('commit ', message)

@plac.annotations(quiet=('summary information', 'flag', 'q'))
def status(quiet):

"A fake status command"
return ('status ', quiet)

def __missing__(name):
return ('Command %r does not exist' % name,)

def __exit__(etype, exc, tb):
"Will be called automatically at the end of the interpreter loop"
if etype in (None, GeneratorExit): # success

print('ok')

main = __import__(__name__) # the module imports itself!

if __name__ == '__main__':
import plac
for out in plac.call(main, version='0.1.0'):

print(out)

52 Chapter 16. Advanced usages of plac

https://pypi.org/project/plac/

plac

Notice that I have defined both an __exit__ hook and a __missing__ hook, invoked for non-existing commands.
The real trick here is the line main = __import__(__name__), which define main to be an alias for the current
module.

The vcs module can be run through the plac runner (try plac vcs.py -h):

usage: plac_runner.py vcs.py [-h] {status,commit,checkout} ...

A Fake Version Control System

optional arguments:
-h, --help show this help message and exit

subcommands:
{status,commit,checkout}
checkout A fake checkout command
commit A fake commit command
status A fake status command

You can get help for the subcommands by inserting an -h after the name of the command:

$ plac vcs.py status -h
usage: plac_runner.py vcs.py status [-h] [-q]

A fake status command

optional arguments:
-h, --help show this help message and exit
-q, --quiet summary information

Notice how the docstring of the command is automatically shown in the usage message, as well as the documentation
for the sub flag -q.

Here is an example of a non-interactive session:

$ plac vcs.py check url
checkout
url
$ plac vcs.py st -q
status
True
$ plac vcs.py co
commit
None

and here is an interactive session:

$ plac -i vcs.py
usage: plac_runner.py vcs.py [-h] {status,commit,checkout} ...
i> check url
checkout
url
i> st -q
status
True
i> co
commit
None

(continues on next page)

16.10. A non class-based example 53

plac

(continued from previous page)

i> sto
Command 'sto' does not exist
i> [CTRL-D]
ok

Notice the invocation of the __missing__ hook for non-existing commands. Notice also that the __exit__ hook
gets called only in interactive mode.

If the commands are completely independent, a module is a good fit for a method container. In other situations, it is
best to use a custom class.

16.11 Writing your own plac runner

The runner included in the plac distribution is intentionally kept small (around 50 lines of code) so that you can study
it and write your own runner if you want to. If you need to go to such level of detail, you should know that the most
important method of the Interpreter class is the .send method, which takes strings as input and returns a four
elements tuple with attributes .str, .etype, .exc and .tb:

• .str is the output of the command, if successful (a string);

• .etype is the class of the exception, if the command fails;

• .exc is the exception instance;

• .tb is the traceback.

Moreover, the __str__ representation of the output object is redefined to return the output string if the command
was successful, or the error message (preceded by the name of the exception class) if the command failed.

For instance, if you send a misspelled option to the interpreter a SystemExit will be trapped:

>>> import plac
>>> from ishelve import ishelve
>>> with plac.Interpreter(ishelve) as i:
... print(i.send('.cler'))
...
SystemExit: unrecognized arguments: .cler

It is important to invoke the .send method inside the context manager, otherwise you will get a RuntimeError.

For instance, suppose you want to implement a graphical runner for a plac-based interpreter with two text widgets:
one to enter the commands and one to display the results. Suppose you want to display the errors with tracebacks in
red. You will need to code something like that (pseudocode follows):

input_widget = WidgetReadingInput()
output_widget = WidgetDisplayingOutput()

def send(interpreter, line):
out = interpreter.send(line)
if out.tb: # there was an error

output_widget.display(out.tb, color='red')
else:

output_widget.display(out.str)

main = plac.import_main(tool_path) # get the main object

(continues on next page)

54 Chapter 16. Advanced usages of plac

https://pypi.org/project/plac/

plac

(continued from previous page)

with plac.Interpreter(main) as i:
def callback(event):

if event.user_pressed_ENTER():
send(i, input_widget.last_line)

input_widget.addcallback(callback)
gui_mainloop.start()

You can adapt the pseudocode to your GUI toolkit of choice and you can also change the file associations in such a
way that the graphical user interface starts when clicking on a plac tool file.

An example of a GUI program built on top of plac is given later on, in the paragraph Managing the output of concurrent
commands (using Tkinter for simplicity and portability).

There is a final caveat: since the plac interpreter loop is implemented via extended generators, plac interpreters are
single threaded: you will get an error if you .send commands from separated threads. You can circumvent the
problem by using a queue. If EXIT is a sentinel value to signal exiting from the interpreter loop, you can write code
like this:

with interpreter:
for input_value in iter(input_queue.get, EXIT):

output_queue.put(interpreter.send(input_value))

The same trick also works for processes; you could run the interpreter loop in a separate process and send commands
to it via the Queue class provided by the multiprocessing module.

16.12 Long running commands

As we saw, by default a plac interpreter blocks until the command terminates. This is an issue, in the sense that it
makes the interactive experience quite painful for long running commands. An example is better than a thousand
words, so consider the following fake importer:

import time
import plac

class FakeImporter(object):
"A fake importer with an import_file command"
commands = ['import_file']
def __init__(self, dsn):

self.dsn = dsn
def import_file(self, fname):

"Import a file into the database"
try:

for n in range(10000):
time.sleep(.01)
if n % 100 == 99:

yield 'Imported %d lines' % (n+1)
finally:

print('closing the file')

if __name__ == '__main__':
plac.Interpreter.call(FakeImporter)

If you run the import_file command, you will have to wait for 200 seconds before entering a new command:

16.12. Long running commands 55

https://pypi.org/project/plac/
https://docs.python.org/library/multiprocessing.html
https://pypi.org/project/plac/

plac

$ python importer1.py dsn -i
A fake importer with an import_file command
i> import_file file1
... <wait 3+ minutes>
Imported 100 lines
Imported 200 lines
Imported 300 lines
...
Imported 10000 lines
closing the file

Being unable to enter any other command is quite annoying: in those situations one would like to run the long running
commands in the background, to keep the interface responsive. plac provides two ways to reach this goal: threads and
processes.

16.13 Threaded commands

The most familiar way to execute a task in the background (even if not necessarily the best way) is to run it into a
separate thread. In our example it is sufficient to replace the line

commands = ['import_file']

with

thcommands = ['import_file']

to tell to the plac interpreter that the command import_file should be run into a separated thread. Here is an
example session:

i> import_file file1
<ThreadedTask 1 [import_file file1] RUNNING>

The import task started in a separated thread. You can see the progress of the task by using the special command
.output:

i> .output 1
<ThreadedTask 1 [import_file file1] RUNNING>
Imported 100 lines
Imported 200 lines

If you look after a while, you will get more lines of output:

i> .output 1
<ThreadedTask 1 [import_file file1] RUNNING>
Imported 100 lines
Imported 200 lines
Imported 300 lines
Imported 400 lines

If you look after a time long enough, the task will be finished:

i> .output 1
<ThreadedTask 1 [import_file file1] FINISHED>

It is possible to store the output of a task into a file, to be read later (this is useful for tasks with a large output):

56 Chapter 16. Advanced usages of plac

https://pypi.org/project/plac/
https://pypi.org/project/plac/

plac

i> .output 1 out.txt
saved output of 1 into out.txt

You can even skip the number argument: then .output will the return the output of the last launched command (the
special commands like .output do not count).

You can launch many tasks one after the other:

i> import_file file2
<ThreadedTask 5 [import_file file2] RUNNING>
i> import_file file3
<ThreadedTask 6 [import_file file3] RUNNING>

The .list command displays all the running tasks:

i> .list
<ThreadedTask 5 [import_file file2] RUNNING>
<ThreadedTask 6 [import_file file3] RUNNING>

It is even possible to kill a task:

i> .kill 5
<ThreadedTask 5 [import_file file2] TOBEKILLED>
wait a bit ...
closing the file
i> .output 5
<ThreadedTask 5 [import_file file2] KILLED>

Note that since at the Python level it is impossible to kill a thread, the .kill command works by setting the status
of the task to TOBEKILLED. Internally the generator corresponding to the command is executed in the thread and the
status is checked at each iteration: when the status becomes TOBEKILLED, a GeneratorExit exception is raised
and the thread terminates (softly, so that the finally clause is honored). In our example the generator is yielding
back control once every 100 iterations, i.e. every two seconds (not much). In order to get a responsive interface it is a
good idea to yield more often, for instance every 10 iterations (i.e. 5 times per second), as in the following code:

import time
import plac

class FakeImporter(object):
"A fake importer with an import_file command"
thcommands = ['import_file']
def __init__(self, dsn):

self.dsn = dsn
def import_file(self, fname):

"Import a file into the database"
try:

for n in range(10000):
time.sleep(.02)
if n % 100 == 99: # every two seconds

yield 'Imported %d lines' % (n+1)
if n % 10 == 9: # every 0.2 seconds

yield # go back and check the TOBEKILLED status
finally:

print('closing the file')

if __name__ == '__main__':
plac.Interpreter.call(FakeImporter)

16.13. Threaded commands 57

plac

16.14 Running commands as external processes

Threads are not loved much in the Python world and actually most people prefer to use processes instead. For this
reason plac provides the option to execute long running commands as external processes. Unfortunately the current
implementation only works on Unix-like operating systems (including Mac OS/X) because it relies on fork via the
multiprocessing module.

In our example, to enable the feature it is sufficient to replace the line

thcommands = ['import_file']

with

mpcommands = ['import_file'].

The user experience is exactly the same as with threads and you will not see any difference at the user interface level:

i> import_file file3
<MPTask 1 [import_file file3] SUBMITTED>
i> .kill 1
<MPTask 1 [import_file file3] RUNNING>
closing the file
i> .output 1
<MPTask 1 [import_file file3] KILLED>
Imported 100 lines
Imported 200 lines
i>

Still, using processes is quite different than using threads: in particular, when using processes you can only yield
pickleable values and you cannot re-raise an exception first raised in a different process, because traceback objects are
not pickleable. Moreover, you cannot rely on automatic sharing of your objects.

On the plus side, when using processes you do not need to worry about killing a command: they are killed immediately
using a SIGTERM signal, and there is no TOBEKILLED mechanism. Moreover, the killing is guaranteed to be soft:
internally a command receiving a SIGTERM raises a TerminatedProcess exception which is trapped in the
generator loop, so that the command is closed properly.

Using processes allows one to take full advantage of multicore machines and it is safer than using threads, so it is the
recommended approach unless you are working on Windows.

16.15 Managing the output of concurrent commands

plac acts as a command-line task launcher and can be used as the base to build a GUI-based task launcher and task
monitor. To this aim the interpreter class provides a .submit method which returns a task object and a .tasks
method returning the list of all the tasks submitted to the interpreter. The submit method does not start the task and
thus it is nonblocking. Each task has an .outlist attribute which is a list storing the value yielded by the generator
underlying the task (the None values are skipped though): the .outlist grows as the task runs and more values
are yielded. Accessing the .outlist is nonblocking and can be done freely. Finally there is a .result property
which waits for the task to finish and returns the last yielded value or raises an exception. The code below provides an
example of how you could implement a GUI over the importer example:

from __future__ import with_statement
from Tkinter import *
from importer3 import FakeImporter

def taskwidget(root, task, tick=500):

(continues on next page)

58 Chapter 16. Advanced usages of plac

https://pypi.org/project/plac/
https://docs.python.org/library/multiprocessing.html
https://pypi.org/project/plac/

plac

(continued from previous page)

"A Label widget showing the output of a task every 500 ms"
sv = StringVar(root)
lb = Label(root, textvariable=sv)
def show_outlist():

try:
out = task.outlist[-1]

except IndexError: # no output yet
out = ''

sv.set('%s %s' % (task, out))
root.after(tick, show_outlist)

root.after(0, show_outlist)
return lb

def monitor(tasks):
root = Tk()
for task in tasks:

task.run()
taskwidget(root, task).pack()

root.mainloop()

if __name__ == '__main__':
import plac
with plac.Interpreter(plac.call(FakeImporter)) as i:

tasks = [i.submit('import_file f1'), i.submit('import_file f2')]
monitor(tasks)

16.15. Managing the output of concurrent commands 59

plac

60 Chapter 16. Advanced usages of plac

CHAPTER

SEVENTEEN

EXPERIMENTAL FEATURES

The distribution of plac includes a few experimental features which I am not committed to fully support and that may
go away in future versions. They are included as examples of things that you may build on top of plac: the aim is to
give you ideas. Some of the experimental features might grow to become external projects built on plac.

17.1 Parallel computing with plac

plac is certainly not intended as a tool for parallel computing, but still you can use it to launch a set of commands
and collect the results, similarly to the MapReduce pattern popularized by Google. In order to give an example, I will
consider the “Hello World” of parallel computing, i.e. the computation of pi with independent processes. There is a
huge number of algorithms to compute pi; here I will describe a trivial one chosen for simplicity, not for efficiency.
The trick is to consider the first quadrant of a circle with radius 1 and to extract a number of points (x, y) with x
and y random variables in the interval [0,1]. The probability of extracting a number inside the quadrant (i.e. with
x^2 + y^2 < 1) is proportional to the area of the quadrant (i.e. pi/4). The value of pi therefore can be extracted
by multiplying by 4 the ratio between the number of points in the quadrant versus the total number of points N, for N
large:

def calc_pi(N):
inside = 0
for j in xrange(N):

x, y = random(), random()
if x*x + y*y < 1:

inside += 1
return (4.0 * inside) / N

The algorithm is trivially parallelizable: if you have n CPUs, you can compute pi n times with N/n iterations, sum the
results and divide the total by n. I have a Macbook with two cores, therefore I would expect a speedup factor of 2
with respect to a sequential computation. Moreover, I would expect a threaded computation to be even slower than a
sequential computation, due to the GIL and the scheduling overhead.

Here is a script implementing the algorithm and working in three different modes (parallel mode, threaded mode and
sequential mode) depending on a mode option:

-*- coding: utf-8 -*-
from __future__ import with_statement
from __future__ import division
import math
from random import random
import multiprocessing
import plac

(continues on next page)

61

https://pypi.org/project/plac/
https://pypi.org/project/plac/
https://pypi.org/project/plac/
https://pypi.org/project/plac/

plac

(continued from previous page)

class PiCalculator(object):
"""Compute \u03C0 in parallel with threads or processes"""

@plac.annotations(
npoints=('number of integration points', 'positional', None, int),
mode=('sequential|parallel|threaded', 'option', 'm', str, 'SPT'))

def __init__(self, npoints, mode='S'):
self.npoints = npoints
if mode == 'P':

self.mpcommands = ['calc_pi']
elif mode == 'T':

self.thcommands = ['calc_pi']
elif mode == 'S':

self.commands = ['calc_pi']
self.n_cpu = multiprocessing.cpu_count()

def submit_tasks(self):
npoints = math.ceil(self.npoints / self.n_cpu)
self.i = plac.Interpreter(self).__enter__()
return [self.i.submit('calc_pi %d' % npoints)

for _ in range(self.n_cpu)]

def close(self):
self.i.close()

@plac.annotations(npoints=('npoints', 'positional', None, int))
def calc_pi(self, npoints):

counts = 0
for j in range(npoints):

n, r = divmod(j, 1000000)
if r == 0:

yield '%dM iterations' % n
x, y = random(), random()
if x*x + y*y < 1:

counts += 1
yield (4.0 * counts) / npoints

def run(self):
tasks = self.i.tasks()
for t in tasks:

t.run()
try:

total = 0
for task in tasks:

total += task.result
except: # the task was killed

print(tasks)
return

return total / self.n_cpu

if __name__ == '__main__':
pc = plac.call(PiCalculator)
pc.submit_tasks()
try:

import time
t0 = time.time()
print('%f in %f seconds ' % (pc.run(), time.time() - t0))

(continues on next page)

62 Chapter 17. Experimental features

plac

(continued from previous page)

finally:
pc.close()

Notice the submit_tasks method, which instantiates and initializes a plac.Interpreter object and submits a
number of commands corresponding to the number of available CPUs. The calc_pi command yields a log message
for each million interactions, in order to monitor the progress of the computation. The run method starts all the
submitted commands in parallel and sums the results. It returns the average value of pi after the slowest CPU has
finished its job (if the CPUs are equal and equally busy they should finish more or less at the same time).

Here are the results on my old Macbook with Ubuntu 10.04 and Python 2.6, for 10 million of iterations:

$ python picalculator.py -mP 10000000 # two processes
3.141904 in 5.744545 seconds
$ python picalculator.py -mT 10000000 # two threads
3.141272 in 13.875645 seconds
$ python picalculator.py -mS 10000000 # sequential
3.141586 in 11.353841 seconds

As you see using processes one gets a 2x speedup indeed, where the threaded mode is some 20% slower than the
sequential mode.

Since the pattern “submit a bunch of tasks, start them and collect the results” is so common, plac provides a utility
function runp(genseq, mode='p') to start a bunch of generators and return a list of results. By default runp
use processes, but you can use threads by passing mode='t'. With runp the parallel pi calculation becomes a
one-liner:

sum(task.result for task in plac.runp(calc_pi(N) for i in range(ncpus)))/ncpus

The file test_runp in the doc directory of the plac distribution shows another usage example. Note that if one of
the tasks fails for some reason, you will get the exception object instead of the result.

17.2 Monitor support

plac provides experimental support for monitoring the output of concurrent commands, at least for
platforms where multiprocessing is fully supported. You can define your own monitor class, sim-
ply by inheriting from plac.Monitor and overriding the methods add_listener(self, taskno),
del_listener(self, taskno), notify_listener(self, taskno, msg), read_queue(self),
start(self) and stop(self). Then you can add a monitor object to any plac.Interpreter object by
calling the add_monitor method. For convenience, plac comes with a very simple TkMonitor based on Tkinter
(I chose Tkinter because it is easy to use and in the standard library, but you can use any GUI): you can look at how
the TkMonitor is implemented in plac_tk.py and adapt it. Here is a usage example of the TkMonitor:

from __future__ import with_statement
import plac

class Hello(object):
mpcommands = ['hello', 'quit']
def hello(self):

yield 'hello'
def quit(self):

raise plac.Interpreter.Exit

if __name__ == '__main__':
i = plac.Interpreter(Hello())

(continues on next page)

17.2. Monitor support 63

https://pypi.org/project/plac/
https://pypi.org/project/plac/

plac

(continued from previous page)

i.add_monitor(plac.TkMonitor('tkmon'))
i.interact()

Try to run the hello command in the interactive interpreter: each time, a new text widget will be added displaying
the output of the command. Note that if Tkinter is not installed correctly on your system, the TkMonitor class
will not be available.

17.3 The plac server

A command-line oriented interface can be easily converted into a socket-based interface. Starting from release 0.7
plac features a built-in server which is able to accept commands from multiple clients and execute them. The server
works by instantiating a separate interpreter for each client, so that if a client interpreter dies for any reason, the
other interpreters keep working. To avoid external dependencies the server is based on the asynchat module in the
standard library, but it would not be difficult to replace the server with a different one (for instance, a Twisted server).
Notice that at the moment the plac server does not work with to Python 3.2+ due to changes to asynchat. In time
I will fix this and other known issues. You should consider the server functionality still experimental and subject to
changes. Also, notice that since asynchat-based servers are asynchronous, any blocking command in the interpreter
should be run in a separated process or thread. The default port for the plac server is 2199, and the command to signal
end-of-connection is EOF. For instance, here is how you could manage remote import on a database (say an SQLite
db):

import plac
from importer2 import FakeImporter

def main(port=2199):
main = FakeImporter('dsn')
plac.Interpreter(main).start_server(port)

if __name__ == '__main__':
plac.call(main)

You can connect to the server with telnet on port 2199, as follows:

$ telnet localhost 2199
Trying ::1...
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
i> import_file f1
i> .list
<ThreadedTask 1 [import_file f1] RUNNING>
i> .out
Imported 100 lines
Imported 200 lines
i> EOF
Connection closed by foreign host.

64 Chapter 17. Experimental features

https://pypi.org/project/plac/
https://pypi.org/project/plac/
https://pypi.org/project/plac/

plac

17.4 Summary

Once plac claimed to be the easiest command-line arguments parser in the world. Having read this document you may
think that it is not so easy after all. But it is a false impression. Actually the rules are quite simple:

1. if you want to implement a command-line script, use plac.call;

2. if you want to implement a command interpreter, use plac.Interpreter:

• for an interactive interpreter, call the .interact method;

• for a batch interpreter, call the .execute method;

3. for testing call the Interpreter.check method in the appropriate context or use the Interpreter.
doctest feature;

4. if you need to go to a lower level, you may need to call the Interpreter.send method which returns a
(finished) Task object;

5. long running commands can be executed in the background as threads or processes: just declare them in the lists
thcommands and mpcommands respectively;

6. the .start_server method starts an asynchronous server on the given port number (default 2199).

Moreover, remember that plac_runner.py is your friend.

17.5 Appendix: custom annotation objects

Internally plac uses an Annotation class to convert the tuples in the function signature to annotation objects, i.e.
objects with six attributes: help, kind, short, type, choices, metavar.

Advanced users can implement their own annotation objects. For instance, here is an example of how you could
implement annotations for positional arguments:

annotations.py
class Positional(object):

def __init__(self, help='', type=None, choices=None, metavar=None):
self.help = help
self.kind = 'positional'
self.abbrev = None
self.type = type
self.choices = choices
self.metavar = metavar

You can use such annotation objects as follows:

example11.py
import plac
from annotations import Positional

@plac.annotations(
i=Positional("This is an int", int),
n=Positional("This is a float", float),
rest=Positional("Other arguments"))

def main(i, n, *rest):
print(i, n, rest)

(continues on next page)

17.4. Summary 65

https://pypi.org/project/plac/
https://pypi.org/project/plac/

plac

(continued from previous page)

if __name__ == '__main__':
import plac; plac.call(main)

Here is the usage message you get:

usage: example11.py [-h] i n [rest ...]

positional arguments:
i This is an int
n This is a float
rest Other arguments

options:
-h, --help show this help message and exit

You can go on and define Option and Flag classes, if you like. Using custom annotation objects you could do
advanced things like extracting the annotations from a configuration file or from a database, but I expect such use
cases to be quite rare: the default mechanism should work pretty well for most users.

66 Chapter 17. Experimental features

	For the impatient
	The importance of scaling down
	Scripts with required arguments
	Scripts with default arguments
	Scripts with options (and smart options)
	Scripts with flags
	plac for Python 2.X users
	More features
	What to do if an argument name clashes with a Python builtin/keyword?
	Keyword arguments
	plac vs argparse
	Final example: a shelve interface
	plac vs the rest of the world
	The future
	Trivia: the story behind the name
	Advanced usages of plac
	Introduction
	From scripts to interactive applications
	Testing a plac application
	Plac easy tests
	Plac batch scripts
	Implementing subcommands
	plac.Interpreter.call
	Readline support
	The plac runner
	A non class-based example
	Writing your own plac runner
	Long running commands
	Threaded commands
	Running commands as external processes
	Managing the output of concurrent commands

	Experimental features
	Parallel computing with plac
	Monitor support
	The plac server
	Summary
	Appendix: custom annotation objects

